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Autonomous harvesters can be used for the timely cultivation of high-value crops
such as strawberries, where the robots have the capability to identify ripe and unripe
crops. However, the real-time segmentation of strawberries in an unbridled farming
environment is a challenging task due to fruit occlusion by multiple trusses, stems, and
leaves. In this work, we propose a possible solution by constructing a dynamic feature
selection mechanism for convolutional neural networks (CNN). The proposed building
block namely a dense attention module (DAM) controls the flow of information between
the convolutional encoder and decoder. DAM enables hierarchical adaptive feature
fusion by exploiting both inter-channel and intra-channel relationships and can be easily
integrated into any existing CNN to obtain category-specific feature maps. We validate
our attention module through extensive ablation experiments. In addition, a dataset is
collected from different strawberry farms and divided into four classes corresponding to
different maturity levels of fruits and one is devoted to background. Quantitative analysis
of the proposed method showed a 4.1% and 2.32% increase in mean intersection over
union, over existing state-of-the-art semantic segmentation models and other attention
modules respectively, while simultaneously retaining a processing speed of 53 frames
per second.

Keywords: semantic segmentation, convolutional neural network, encoder-decoder architecture, fruit
segmentation, channel attention, spatial attention, segmentation grad-cam, autonomous harvesting

INTRODUCTION

Since the evolution of deep convolutional neural networks (DCNNs) from neural networks
(Krizhevsky et al., 2012), machine learning has shown unprecedented performance on a number
of machine vision and pattern recognition tasks such as image classification (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014; He et al., 2016; Szegedy et al., 2016; ur Rehman et al.,
2018), object detection and localization (Ren et al., 2015; Redmon et al., 2016; He et al., 2017;
Nizami et al., 2020), and semantic and instance segmentation (Long et al., 2015; Ronneberger et al.,
2015; Badrinarayanan et al., 2017; Bolya et al., 2019). Recently, unsupervised algorithms are also
gaining popularity (Epifanio and Soille, 2007; Zhao and Kit, 2011; Xia and Kulis, 2017; Ilyas et al.,
2020) due to their certain advantages over supervised ones (Huang et al., 2017; Lin et al., 2017c;
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Ilyas et al., 2020). Moreover, deep learning has also demonstrated
unparalleled performance in the field of bioinformatics
and computational biology (Wahab et al., 2019, 2020;
Park et al., 2020).

Where DCNNs have found several intuitive applications in
various fields in our everyday lives, they are also being used in
agriculture for autonomous harvesting and seeding. A lot of work
has been done in literature in this regard, like crop and weed
classification (Dyrmann et al., 2016, 2017; Grinblat et al., 2016;
Kussul et al., 2017), plant detection (Mohanty et al., 2016; Khan
et al., 2020), land cover classification (Ienco et al., 2017; Kussul
et al., 2017), and crop disease identification (Fuentes et al., 2018).
Just like any other machine vision task, the implementation
of DCNNs in agriculture comes with its own set of problems.
By the same token, the real time segmentation and detection
of strawberries in an unconstrained farm environment is a
challenging task, as strawberries usually grow in clusters and are
occluded by leaves, branches, and other fruits. Due to different
light intensities sometimes backgrounds and fruits have the same
texture and color. These commonly occurring phenomena in
farms makes the task more difficult and reduces the accuracy of
DCNNs (Sa et al., 2016; Xiong et al., 2019).

Strawberries are some of the most highly valued crops as they
give the best yield under sheltered environments, and thus have
a very high production cost (Sa et al., 2016). The most crucial
time for strawberry crop is harvesting time because the fruit
becomes overripe quickly and if picking gets behind it effects
the whole crop. Moreover, hiring skilled laborers in horticulture
accounts for most of the cultivation cost. This crop also needs
intensive post-harvest care (Guerrero et al., 2017). Because of
all these expenses, horticulture industries in general are bound
to have small profit margins. In some regions, labor cost makes
up more than half of the total production cost, e.g., 60% in
Norway (Xiong et al., 2019). Furthermore, there is a decline
in interest of joining the agriculture industry among the new
generation of workers (Adhikari et al., 2019). Under all these
challenges the food industry must keep up with the demands of
the ever-growing population.

To overcome such problems, one potential solution is
autonomous harvesting as it can reduce labor cost to a minimum
and increase the crop yield quality by timely harvesting. Due to
outstanding performances of DCNNs in computer vision tasks,
robotics and unmanned systems are now faster and more reliable
than ever. Which in turn has allowed their adoption into many
real-life applications like the detection of crop rows, weeds, and
seeding beds in fields of maize and rice (Guerrero et al., 2017;
Adhikari et al., 2019; Ma et al., 2019).

In this work, we proposed a DCNN named Straw-Net, to
precisely segment and classify the fruits into specified classes in
real time. In the case of strawberries, this is difficult to achieve
because they usually grow in clusters and within the same cluster,
and tend to have different sizes, shapes, and colors. In some
cases, severe occlusion may also occur which renders the fruit
almost invisible. By taking all these shortcomings into account,
we designed an adaptive self-contained attention mechanism (i.e.,
dense attention module, DAM) for our network, which is capable
of learning both channel and spatial interdependencies and can

learn ‘what’ is important and ‘where’ to put more focus. We verify
the efficacy of the proposed attention module quantitatively
via benchmark metrics and qualitatively via modified Grad-
CAM (Selvaraju et al., 2017). Grad-CAM is usually used for
classification models, however, this paper extends its applicability
to segmentation models. The dataset used in this paper is
collected from different strawberry farms across the Republic of
Korea under different lighting and weather conditions for better
generalization of real-life scenarios. Our main contributions are
listed below:

• We propose a single attention module (DAM) for
both channel and spatial attention, and a parallel
dilated convolution module (PDC) for aggregating
multi-scale context.
• We validate the effectiveness of DAM and PDC by ample

ablation experiments.
• We propose an optimal location for integrating our

attention module in any existing network and compare
results with other existing attention mechanisms.
• We propose a technique for visual interpretation of

segmentation networks by modifying Grad-CAM.
• A new dataset for the semantic segmentation of

strawberries is introduced, consisting of four classes
depending on the ripeness level of fruit as shown in
Figures 1, 2 (see section “Materials and Methods” for
details).

RELATED WORK

Autonomous Harvesting
A great deal of work has been done in the field of autonomous
harvesting of fruits using various classical image analysis and
pattern recognition techniques (Yamamoto et al., 2010; Feng
et al., 2012; Ouyang et al., 2012; Qingchun et al., 2012; Zhang
et al., 2012; Hayashi et al., 2013, 2014). One autonomous
strawberry harvester (ASH) in particular AGROBOT SW6010
(Agrobot, 2020) has gained a lot of popularity. It uses
morphological, color, and shape analysis for the identification
and selection of strawberries to harvest, and uses 24 robotic
arms to perform harvesting. FFRobotics (Kahani, 2017) have
introduced the FFBot for harvesting apples, which needs a human
supervisor to control and monitor the harvesting process. More
recently, Hravest CROO (Harvest Croo, 2021) has introduced
an ASH which divides the fruit picking into three steps, (a)
grab the leaves, (b) 3D inspection of plant, and finally (c)
pick the fruit. This simple robotic framework allows them
to increase harvesting speed. Autonomous harvesters are also
gaining popularity in other areas of precision agriculture like
weeding. NAIO Technologies (Barthes, 2010) has introduced
multiple autonomous weeding robots like OZ, TED, and DINO
for easier vegetable weeding on large-scale farms.

The performance and accuracy of any autonomous harvester
relies heavily on the perception system used and how the visual
information obtained is being processed. An earlier era of vision-
based harvesters used monocular devices to obtain 2D visual
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FIGURE 1 | Overview of the proposed DCNN and the dataset with corresponding annotations. Seg-Grad-CAM represents the attention maps for ripe class (i.e.,
channel # 1).

FIGURE 2 | A few representative instances belonging to each class (stage of ripeness) in the strawberry segmentation (SS1K) dataset. (A) Ripe; edible quality, (B)
green; not ready for harvest, (C) unripe; export quality, (D) background.

data, e.g., Grand d’Esnon et al. (1987) classified fruits based
on their texture and geometry and Edan et al. (2000) used
two monochromatic cameras to produce a stereo-like effect
for better localization of melons. Similarly, Yamamoto et al.
(2014) introduced a stationary strawberry picking mechanism
which used three different monochromatic light sources for
the coloration measurement and spectral analysis of fruits and

leaves to precisely localize the fruit for picking. With this
mechanism they achieved an effective yield rate of 67%. But
these monochromatic vision systems were highly susceptible to
light intensity changes. Later, some works used stereovision to
obtain 3D map of fruits via triangulation (Sun et al., 2011).
A predecessor of AGROBOT SW6010 used stereo RGB-D images
for tomato harvesting (Buemi, 1995; Buemi et al., 1996). Using
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RGB-D images obtained via a Binocular-stereo vision camera, Ge
et al. (2019) constructed a 3D point cloud to localize the pickable
fruit. They used a Mask-RCNN as a backbone of their computer
vision-based control to classify the strawberry into two classes,
i.e., ripe and unripe. Following this pipeline they were able to
improve the picking accuracy to 74%. Similarly, for recognizing
clustered tomatoes and classifying them into overlapping and
adhering regions, Xiang et al. (2014) used stereovision to obtain a
depth-map, the reported accuracy for clustered tomato detection
was 87.9%. Sensor calibration plays a vital role in the performance
of stereovision systems. Recently, laser-based distance measuring
systems (LiDAR) and spectral imaging are also doing wonders
in precision agriculture. Zhang et al. (2015) combined computer
vision with near-infrared structured lighting, and using a single
multispectral camera was able to reconstruct the 3D surface of
the apple for calyx and stem recognition. The results showed a
97.5% average accuracy.

These aforementioned ASHs rely heavily on classical
mathematical algorithms; Ouyang et al. (2012) introduced
a pipeline consisting of a series of image preprocessing and
denoising techniques and then used the optimal thresholding
(Otsu) algorithm for strawberry segmentation. Zhao et al. (2016)
used a grayscale co-occurrence matrix to extract features of
fruits from various color spaces. Whereas, different color spaces
have different properties and their own application domain.
Wei et al. (2014) used an OHTA color space, a modified version
of the Otsu algorithm, to achieve an impressive detection
accuracy of more than 95%. But it had a major drawback of not
being able to detect green-colored fruits. Similarly, Qingchun
et al. (2012) used a HSV color space to extract features for
strawberry harvesting, results showed a 86% successful harvest
rate. All the above-mentioned methods can detect fruits under
controlled environments, but the detection accuracy drops when
illumination changes. Moreover, depending on the variation
in orientation, size, and shape of fruit, these methods require
a lot of parameter tuning (Durand-Petiteville et al., 2017).
In short, although several of the ASH prototypes have been
developed to segment and classify fruits accurately in real
time, their performance remains susceptible to unconstrained
environments. This is where machine learning comes in.

Agricultural farms are unconstrained natural environments
or semi-constrained at very best. Machine learning has found
intuitive applications in many fields, because of its adaptive
learning ability, like in healthcare (Ronneberger et al., 2015;
Işın et al., 2016; Kauanova et al., 2017), autonomous driving
(Fujiyoshi et al., 2019; Hofmarcher et al., 2019; Imai, 2019),
and weed and crop detection (Grinblat et al., 2016; Mohanty
et al., 2016; Dyrmann et al., 2017; Kussul et al., 2017; Fuentes
et al., 2018). But very little work has been done in detecting
fruits and classifying them according to their ripeness level.
Lamb and Chuah (2018) used a single-stage detector SSD (Liu
et al., 2016) to detect strawberries and attained a maximum
average precision of 87.7%, but were not able to achieve real-time
performance (see section “Real-Time Performance Barrier”) even
after using various network compression techniques. Bargoti and
Underwood (2017) proposed an image processing framework
using a simple CNN and a multi-scale multi-layer perceptron

(ms-MLP) to detect and count apples, with an F1-score of 85.8%.
Their algorithm was a multi-stage setup which used watershed
and circular Hough transform to detect the individual fruits.
Hence falling short of real-time performance. Chen et al. (2019)
used a faster region-based convolutional neural network (F-
RCNN) (Ren et al., 2015) for predicting strawberry production
rate using aerial farm images. Sa et al. (2016) presented an
approach for fruit detection in field farms using an F-RCNN
and showed its generalization to many different farm fields.
Moreover, Yu et al. (2019) combined a Mask-RCNN with a
feature pyramid network (FPN) for better feature extraction,
to detect mature strawberries (one class) with a precision rate
of 95%, but were not able to break the real-time performance
barrier (see section “Real-Time Performance Barrier”). Whereas
our proposed encoder-decoder based CNN is able to explicitly
detect and classify fruits according to specified ripeness levels
while still maintaining a processing speed of 53 fps on standard
resolution images.

Semantic Segmentation
Since the dawn of fully convolutional networks (FCNs) (Long
et al., 2015) semantic segmentation has gained a lot of
popularity. Following the main idea of embedding low contextual
information in a progressive manner to preserve spatial and
temporal information, a lot of encoder-decoder architecture
has been introduced in literature. Deconv-Nets (Noh et al.,
2015) introduced transposed convolution called deconvolution,
for learning the upsampling process. SegNets (Badrinarayanan
et al., 2017) introduced unpooling (i.e., inverse of pooling) to
upsample the score maps in a gradual way. To remedy the loss
of localization information by the subsequent downsampling of
feature maps, U-net (Ronneberger et al., 2015) proposed skip-
connections between the encoder and decoder to preserve spatial
information. Further, the intermediate layers were exploited by
RefineNet (Lin et al., 2017a) with skip-connections, which uses
multipath refinement via different convolutional modules to get
final predictions. Global Convolutional Network (Peng et al.,
2017) tried to increase the receptive field by factorizing large
kernels into smaller ones to get global contextual embeddings.
PSP-Net (Zhao et al., 2017) used spatial pyramid pooling at
different scales, and Deeplab (Chen et al., 2017) used atrous
convolutions with different dilation rates for exploiting multi-
scale information. Contrary to previous works that exploited
intermediate layers by modifying identity skip-connections (Lin
et al., 2017a; Peng et al., 2017) and those that use contextual
multi-scale embedding for context gathering, our proposed
network integrates the representational power of both of these
types of networks to achieve better segmentation results.

Dilated Separable Convolution
More recently, networks like Dilated ResNet (DRN) (Yu et al.,
2017) used dilated convolutions (Yu and Koltun, 2015) to
increase the valid receptive field size while still maintaining the
same computational cost (i.e., number of parameters and FLOPs).
Furthermore, Deeplab-v3+ (Chen et al., 2018) combined dilated
convolution with depth-wise separable convolution (Chollet,
2017). By doing so they achieved a significant performance
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boost while keeping the model complexity to a minimum. These
convolutions have been adopted by many recent algorithms (Jin
et al., 2014; Wang et al., 2016; Howard et al., 2017; Zhang et al.,
2018). In our network, we have also used the dilated separable
convolution for better performance.

Attention Mechanism
Attention plays a vital role in human perception (Rensink, 2000;
Corbetta and Shulman, 2002). As a matter of fact, neurons
present in the primary visual cortex of cats (Hubel and Wiesel,
1962) have inspired the construction of DCNNs (LeCun et al.,
1989). Neurons in the human visual system do not process the
whole semantic scene at once. Instead the neurons try to process
the scenery in a sequence and they adaptively focus on only the
salient features of the scenery in front of them (Woo et al., 2018).

Recent algorithms have also tried to equip DCNNs with
such attention mechanisms to improve their performance (Lin
et al., 2017b; Shen et al., 2018). More recently, Fu et al. (2019)
proposed a self-attention mechanism for integrating local and
global semantic features. Their mechanism consisted of two
modules, one for position attention (PAM) and one for channel
attention (CAM). Because of heavy matrix multiplications, both
modules were far too computationally expensive. Whereas,
squeeze and excite (SE) networks (Hu et al., 2018) recalibrated the
feature maps depending upon their importance, while keeping
the computational overhead to a minimum. Although in Hu
et al. (2018), the authors implicitly refer to the SE module as
an attention mechanism, this can be explicitly considered as
one, as shown by Park et al. (2018) and Woo et al. (2018).
Recently, a block attention module (BAM) (Park et al., 2018)
and convolution block attention module (CBAM) (Woo et al.,
2018) achieved a significant performance boost in an ImageNet-
1K classification challenge by adding spatial attention to SE
modules. These aforementioned modules also consisted of two
separate blocks for generating channel and spatial attention.
In contrast to these works, we extend the use of attention
mechanisms to the segmentation task. Moreover, different from
existing works, instead of using two separate blocks for channel
and spatial attention, we propose one block for both tasks,
to avoid computational overhead and reduce inference time.
We propose a gating mechanism to control the flow of multi-
scale information from different stages of the backbone network
(encoder) to suitable upsampling stages of the decoder. By doing
so, we are able to achieve better category specific attention masks.
Our adaptive self-contained attention mechanism can learn
both channel and spatial interdependencies and can dynamically
emphasize or suppress features according to their importance.
Detailed ablation experiments verify the effectiveness of our
module (see section “Results and Discussion”).

MATERIALS AND METHODS

Image Acquisition
Strawberry images were collected from several strawberry farms
across Jeonju-si District, Jeollabuk-do, Republic of Korea during
the growing season (2019). All the strawberry farms adopted

a hedgerow planting system (Strawberry, 2020) as shown in
Figure 3. The data acquisition was carried out at a distance
of 40 cm, using a 24.1 MPx Canon EOS-200D-based platform
with a CMOS sensor. We chose this distance so that the device
could capture sufficiently large scenery for processing, and at
this distance ASH would be able to perform suitable target
searching and harvesting. During different time periods and
under varying weather and lighting conditions, we acquired 1500
images. Images were stored in the JPEG format and all had a
resolution of 6288 × 4056 pixels. We stored the data in high
resolution to avoid being limited in available resolution at later
processing stages.

Dataset Construction and Annotation
We started with primary data filtering and removed the images
which were blurred or contained no strawberry fruit at all.
After the primary filtering step, we ended up with 1000
unlabeled images. Out of the total 1000 unlabeled images we
randomly selected 750 images for training, 100 for validation, and
150 for testing.

Then with the help of experts in the strawberry harvesting
field, we divided the strawberry fruits into four classes depending
on the ripeness level. We labeled them as follows: (a) ripe;
(edible quality) ready for harvesting, (b) green; not ready for
harvesting, (c) unripe; (export quality) that can be harvested if
the farm had to export the strawberries to far away destinations,
and (d) background. Some representative instances belonging to
each class (stage of ripeness) are shown in Figure 2. According
to field experts and the Food and Agriculture Organization
(FAO, 2020), a strawberry which is less than 70% matured
should be considered as export quality. Because any more than
that and there is a chance that the fruit may rot over long
journeys. So, one might say that labeling the unripe class is
somewhat intuitive. After deciding the ripeness level, we labeled
the images as shown in Figure 1. There also exists a data
imbalance between the classes, such that per batch there are a
greater number of ripe and green strawberries than unripe ones,
as shown in Figure 4. We will discuss this problem of data

FIGURE 3 | Data acquisition process.
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FIGURE 4 | The number of instances of each class in the strawberry
segmentation (SS1K) dataset.

imbalance in the performance analysis (see section “Results and
Discussion”). From this point onward for ease of notation we will
call this strawberry segmentation dataset SS1K (1K for the total
number of samples).

NETWORK ARCHITECTURE

First, we will describe the backbone of our architecture, i.e., the
encoder part and the blocks used within, and then we will discuss
the design considerations for our attention module. Finally, we
will describe the decoder design choice and how to integrate the
attention module in any existing network.

Encoder Design Considerations
A modified FCN for real-time segmentation of strawberry
fruit, named Straw-Net is shown in Figure 5A. The encoder
consists of SE-ResNet (Hu et al., 2018)-like blocks, with a
few modifications. The SE-ResNet block consists of two parts,
one being the ResNet bottleneck and the other being the SE-
module as shown in Figure 5B. In the ResNet bottleneck, instead
of using simple convolution, we decided to use the dilated
separable convolution, which is a combination of dilated and
depth-wise separable convolution (Chen et al., 2018). It allows
the network designer to freely control the feature map’s size
and filter’s effective receptive field (ERF), while significantly
reducing the network computational cost. Depth-wise separable
convolution disentangles the normal convolution into a depth-
wise (or channel-wise) convolution followed by a point-wise
convolution. This decomposition allows the DCNN to achieve
better performance with much fewer parameters. In dilated
convolutions, ERF can be easily changed by changing the dilation
rate ‘di’ (Yu et al., 2017), where normal convolution is a special
case of dilated convolution with d = 1. Increasing the ERF at each
stage of the network helps the convolutional filters to aggregate
multi-scale contextual information more efficiently.

After processing the features by bottleneck layers, next these
feature-maps are passed through the SE-module (Hu et al., 2018),
shown in Figure 5B. SE-modules recalibrate the feature maps by
obtaining their channel-wise statistics via global average pooling
(GAP). The GAP outputs a vector of size n, where n is same
as the number of filter channels. Then this vector is passed
through a multi-layer perceptron (MLP) to obtain a weighing
vector of size n. This vector is then used to adaptively emphasize
or suppress the feature maps according to their importance. For
more details about SE-modules, we refer interested readers to Hu
et al. (2018). Moreover, skip-connection allows for uninterrupted
gradient flow to the earlier layers for better training.

Data in raw images are mostly redundant so a large kernel
size with high stride can be used to process the raw image
and make it ready for deeper layers to process. Using a high
stride also reduces the dimensions which will in turn reduce
the computational overhead (Hasanpour et al., 2016; He et al.,
2016). Keeping that in mind, firstly the image is passed through a
normal convolution layer with 16 filters of size 7 × 7 and stride
2. Now this processed input is passed through the successive SE-
ResNet blocks as shown in Figure 5A. Each convolutional layer in
SE-ResNet is followed by a batch normalization (BN) and ReLu
activation, unless explicitly stated.

The network backbone consists of six stages. All stages consist
of two SE-ResNet blocks. Among those, the first three stages
Si∈ {1,2,3} are followed by subsequent pooling operations for
reducing feature map size. In the next stages Si∈ {4,5,6} we do not
perform a pooling operation. Because, after using the stride = 2
in the first layer and the three subsequent pooling operations
in the first three stages, the extracted feature map size is 16
times smaller than the input at the end of the encoder. Reducing
it further will result in the loss of a lot of useful localization
information, making the decoding process more difficult. In the
first two stages, the dilation rate is set to d = 1, and in the next
three stages, the dilation rate is doubled for every next stage,
i.e., di∈ {3,4,5} = {2,4,8} for stages Si∈ {3,4,5}. The final stage S6
again has a dilation rate of d6 = 1 to avoid the gridding artifact
(Yu and Koltun, 2015).

Parallel Dilated Convolution Module
(PDC)
We go deeper into the DCNNs, even though the deeper layers
have a large theoretical receptive field (TRF) but their effective
receptive field (ERF) is much smaller than the theoretical one
as shown by Zhou et al. (2014). Information regarding global
context plays a vital role in scene segmentation (Peng et al., 2017;
Zhao et al., 2017). So, at the end of the encoder we probe the
feature maps of the last stage (i.e., S6) for aggregating global and
sub-region context by incorporating the PDC module shown in
Figure 6B. PDC acts as a hierarchical global module prior to
using dilated convolution at different dilation rates to extract
global contextual information from S6’s feature maps at multiple
scales. We perform detailed ablation experiments to show the
effectiveness of PDC and compare it with other multi-scale
feature aggregation modules of Zhao et al. (2017) and Chen et al.
(2018) in Section “Ablation Study for (PDC).”
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FIGURE 5 | (A) Straw-Net, complete architecture. Here Si represents different stages of network i ∈ {1,2,. . .6}. c represents the number of channels inside each
SE-ResNet block (we set c = 16), and d is the dilation rate. For details on points P1 and P2 see Section “Ablation Study for DAM.” (B) SE-ResNet module; in the first
three convolutional blocks, the first value represents the number of input feature maps, the second value represents the kernel size, and the third value represents
the number of output channels. The dashed arrows represent the identity mapping. GAP, FC, and r represent global average pooling, densely connected layers, and
reduction ratio, respectively.

FIGURE 6 | (A) Dense attention module, here K is kernel size and t is the reduction factor. (B) Parallel dilated convolution module, here C represent the no. of feature
maps and d is the dilation rate.

Dense Attention Module (DAM)
To control the flow of information from encoder to decoder via
skip-connections we incorporate the dense attention modules on

skip-connections. We found that this is the best location to make
the most out of these attention modules. These modules perform
‘feature surgery’ on the feature maps coming from the encoder
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which are rich in localization information. They help in efficient
feature fusion between encoder feature maps (which focus on
‘where’ the target object is) and decoder feature maps (which
focus on ‘what’ the target object is). The whole operation can be
summarized as follows;

F
′′

si
= DAM

(
Fsi

)
(1)

Given an input feature map Fsi ∈ RWSi×HSi×Csi from stage Si
of the encoder, the DAM computes the refined feature map
F
′′

si
∈ RW

′
×H
′
×C
′

to be concatenated with decoder feature maps.
Usually, the low-level feature maps have a large number of
channels (e.g., 128 or 256). So, DAM first reduces the number of
channels of the corresponding low-level feature maps by a factor
of t such that Fsi ∈ RWsi×Hsi×C

′

where C
′

=
Csi

t . To avoid the
suppression of information in rich decoder feature maps by the
low-level encoder feature maps, we set t = 4 in our experiments.
The contextual information is aggregated using a large kernel size
f K×K
n . To reduce the number of computations and inference time

we decompose the one f K×K
n filter into two parallel f 1×K

n and
f K×1
n filters. Here ‘n’ represents the normal convolutional filter

and we set K = 7. Then the results of both these convolutions are
added in their respective parallel branches as shown in Figure 6A.
Next, we pass these feature maps through a depth (channel)-wise
convolutional layer (in their respective branches) of filter size
3× 3, i.e., f 3×3

c where ‘c’ represents the depth-wise convolutional
filter. In the depth-wise convolution, one filter convolves spatially
on only one feature map making the output feature maps spatially
enhanced as shown by Gao et al. (2018). So, the channel specific
spatial attention for both branches is computed as,

FSA
si
= f 3×3

c
(
f 1×K
n

(
FSi

)
+ f K×1

n
(
FSi

))
(2)

Here, the superscript SA refers to spatial attention in the top
(St) and bottom (Sm) branch. Next, this channel-specific spatial
attention is recapitulated using both average and max pooling
operations generating different feature descriptors.

Favg
Si
= AvgPool

(
Fst

si

)
(3)

Fmax
Si
= MaxPool

(
Fsm

si

)
(4)

Here, Fpool
si ∈

′RW
′
×H
′
×C
′

where W′ and H′ represent the pooled
(average and max) width and height of the feature maps. Unlike
previous work (Hu et al., 2018), we argue that instead of using
only average pooling, exploiting both pooling operations to
gather distinct global characteristics helps the module to infer
distinct channel-wise attention in both branches independently.
Exploiting both average and max pooling features greatly
improves the network’s representational power (see section
“Ablation Study for DAM”). After pooling, these 3D feature
descriptors are passed through an MLP to obtain a 1D descriptor
vector FCA

si ∈ R1×1×C
′

, for obtaining channel attention CA for
both the top (Ct) and bottom (Cm) branch. MLP consists of one
GAP layer for obtaining channel-wise statistical data and two
neuron layers. These 1D vectors can now be used to scale their

respective 3D feature maps according to their importance. In
short, the channel attention is obtained as follows;

FCt
si
= MLP

(
Favg

Si

)
(5)

FCm
si
= MLP

(
Fmax

Si

)
(6)

FCt
si
= σ

[
W2

(
W1

(
GAP

(
Favg

Si

))
+ b1

)
+ b2

]
(7)

FCm
si
= σ

[
W2

(
W1

(
GAP

(
Fmax

Si

))
+ b1

)
+ b2

]
(8)

Here W1 ∈ RC
′
×C
′
/r and b1 ∈ RC

′
/r are the weights and biases

of the hidden neuron layer while W2 ∈ RC
′
/r×C

′

and b2 ∈ RC
′

belong to the output neuron layer. Finally, the output of the
module is now calculated as;

F
′′

si
=

(
FCt

si
⊗ Favg

Si

)
+
(
FCm

si
⊗ Fmax

Si

)
(9)

Where,
⊗

denotes element-wise multiplication.

Decoder Design Choices
We propose a simple yet effective decoder for our network
as shown in Figure 5A. Our decoder bilinearly upsamples the
feature map by a factor of 16 in subsequent steps. In the first
step, the output of PDC is concatenated with the refined feature
maps (i.e., output of DAM) of the third stage of the encoder then
processed through a SE-ResNet block and finally upsampled by a
factor of 2. The second and third steps also upsample the feature
maps after concatenating and processing the feature maps in the
same way. The only difference is that the second step upsamples
by a factor of 2 while the third step upsamples by a factor of
4. This subsequent upsampling of feature maps after obtaining
attention from DAM helps the network to further refine the
segmentation results after each step. Lastly, the network’s output
is obtained by performing a 1 × 1 convolution followed by
Softmax activation.

Implementation Details
Firstly, we resized all the images and segmentation masks to
a 512 × 512 resolution without preserving the aspect ratio,
to reduce training time and computational requirements. We
also carried out extensive data augmentation during training to
increase dataset size and to avoid overfitting. As for augmentation
techniques used, we only selected those transformations which
were suitable for segmentation problems and increased the
network’s robustness. To be precise, we used random crop-
and-resize, random mirroring along the vertical axis, random
rotation, and lastly, random brightness and saturation distortion.

In the encoder, for the number of channels in each stage,
we set C = 16. At each stage, the number of channels (C)
and the dilation rate (d) were successively increased as shown
in Figure 5A. For the SE-ResNet block (Figure 5B), following
Hu et al. (2018), we set the reduction ratio to r = 8. In the
PDC module for global context aggregation, we set dilation rate
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to d = {3,5,7}, respectively, for the three parallel branches as
shown in Figure 6B. Regarding DAM, implementation details
are provided in Section “Dense Attention Module (DAM).” For
training, following Chen et al. (2018) and Fu et al. (2019), we
employed an Adam optimizer along with poly learning rate policy
where,

lr_new = lr∗
(

1−
iter

total_iter

)power
(10)

Here, we set power = 0.9, lr = 0.005 and we used weighted cross
entropy as a loss function. We adopted dropout of 0.25 and set
the mini batch_size = 4. The network is trained for 9K iterations.

RESULTS AND DISCUSSION

Ablation Study for DAM
To evaluate the effectiveness of DAM we performed several
experiments and the results are reported in Table 1. Our
baseline consisted of a simple encoder and decoder as described
in Section “Network Architecture” along with simple U-Net
(Ronneberger et al., 2015)-like skip-connections. Baseline did
not include DAM and PDC modules. It can be seen clearly
from Table 1 that DAM significantly increases the mean
IoU from 79.57% to 88.79%, with a slight increase in
computational cost. Furthermore, the experiments also show
that if we use different pooling operations AMP (i.e., average
and max) in different branches then the network performs
better as compared to the attention module with only one
pooling (i.e., AP or MP). Ablation studies also show the
effect of inclusion and exclusion of channel (CA) and spatial
attention (SA) from DAM [see section “Dense Attention
Module (DAM)”].

Ablation Study for PDC
There are a number of modules available for multi-scale context
aggregation for obtaining better feature representation from
encoder feature maps, like the pyramid pooling module (PPM)
of PSP-Net (Zhao et al., 2017). Furthermore, our PDC module
is closer to the atrous spatial pyramid pooling modules namely

TABLE 1 | Ablation studies on DAM.

Baseline AP MP AMP PDC CA SA mIoU FLOPs Memory
usage

Param.

(%) (G) (GB) (M)

X X 79.57 8.11 1.82 0.7

X X X X X 87.13 14.6 1.69 1.26

X X X X 87.58 14.6 1.69 1.26

X X X X 87.06 9.49 1.56 1.09

X X X X 87.17 11.01 1.67 1.05

X X X X X 88.79 14.6 1.8 1.26

Here AP and MP represent only using average or max pooling in both branches of
DAM. AMP represents average and max pooling both being used in respective
parallel branches of DAM. PDC is parallel dilated convolution module. CA and
SA are channel and spatial attention sub-parts of DAM. Bold is used to highlight
the best results.

ASPP (v2 and v3) introduced by Deeplab_v2 and Deeplab_v3
(Chen et al., 2017, 2018), respectively. We used a PDC module
because it has smaller memory requirement, less floating-point
operations (FLOPs), and number of parameters with almost
identical performance. The results are summarized in Table 2.

DAM Visualization With Segmentation
Grad-CAM
For the qualitative analysis, we apply the Grad-CAM (Selvaraju
et al., 2017), to show the effects of DAM. Grad-CAM is a gradient-
based visualization method, which tries to explain the reasoning
behind the decisions made by the DCNNs. It was mainly
proposed for classification networks. We propose a modified
version of Grad-CAM to evaluate the results of the semantic
segmentation model making it into Segmentation Grad-CAM

(SGC). If
{

Ak
}K

k=1
represents the feature map of a selected layer

with K feature maps then Grad-CAM calculates the heatmaps by
taking the gradient of yc(logit for a given class) w.r.t to all N pixels

(indexed by u, v), in all feature maps of
{

Ak
}K

k=1
. But in the case

of segmentation models, instead of yc (a single value), for each
class we have yc

ij (a whole feature map). In this case, the gradients
are computed by taking the mean of all M pixels (indexed by i, j)
in the feature map of class ‘c.’ Finally, the weighing vector αc

k is
calculated as;

αc
k =

1
N

∑
u, v

(
δ 1

M
∑

(i,j) yc
ij

δAk
u,v

)
(11)

The heatmaps are then generated by;

Lc
SGC = ReLu

(∑
k

(
αc

kAk
))

(12)

Thus, SGC can produce heatmaps which explain the reasoning
behind the grouping of individual pixels of the input image in
one segmented region in the output. We display the activated
attention maps of our network at two points in the decoder as
shown in Figure 5A: firstly, after obtaining attention from DAM
of stage S1 (i.e., point P1) and secondly after obtaining attention

TABLE 2 | Ablation studies for PDC.

Metric PDC PPM ASPP_v2 ASPP_v3

Dil_rate
= {3,5,7}
+ Skip-
connect

Bin-size
= {1,2,3,6}

Dil-rate
= {6,12,18,24}

Dil-rate
= {1,6,12,18}
+ img_pooling

mIoU (%) 88.79 86.49 84.67 88.92

FLOPs (G) 14.6 11.21 15.86 15.31

Memory (GB) 1.8 1.8 1.83 1.82

Param. (M) 1.26 1.22 3.43 1.64

PPM represents pyramid pooling module of Zhao et al. (2017) and ASPP_v2 and
v3 represents the atrous spatial pyramid pooling modules of Chen et al. (2017) and
Chen et al. (2018), respectively. Bold is used to highlight the best results.
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FIGURE 7 | (A) Input images; (B) heatmaps at point P1; (C) heatmaps at point P2. GT represents ground truth and Pred. is the network’s prediction (best viewed in
color).

TABLE 3 | Comparison of results on SS1K dataset.

Method IOR FLOPS (G) Param. (M) Memory Test Precision (%) thresh = 0.75 Recall (%) thresh = 0.75 FPS (sec)

usage (GB) mIoU (%)
Ripe Unripe Green Ripe Unripe Green

FCN-8s 1:1 20.82 2.67 5.23 76.1 92.25 74.89 90.04 75.08 78.93 87.02 39

Seg-Net 1:1 41.33 5.46 – 80.7 94.48 87.85 84.88 92.49 80.72 90.06 7

U-Net 1:1 70.52 4.65 8.24 83.68 94.27 77.72 89.75 84.52 82.4 89.11 32

DAN 8:1 34.4 0.65 5.2 77.12 95.35 65.47 87.58 56.78 65.86 77.12 10

BAM 1:1 20.6 1.1 5.28 87.3 95.63 79.46 94.31 91.13 84.86 86.39 36

CBAM 1:1 19.8 1.1 4.8 86.47 95.74 76.84 89.68 86.68 86.62 91.21 40

PSP-Net 8:1 34.5 0.71 5.4 85.65 94.91 86.42 91.68 84.84 64.64 86.60 18

GCN 1:1 8.6 0.85 2.79 80.51 90.98 72.84 87.85 92.64 60.01 83.46 51

Deeplab_v2 1:1 28.6 3.09 2.94 87.07 95.45 81.47 90.4 87.13 81.1 87.44 49

Deeplab_v3+ 1:1 14.2 1.2 2.93 84.69 93.51 80.21 85.05 88.59 68.44 87.97 53

Straw-Net 1:1 14.6 1.26 1.8 88.79 94.35 86.51 94.16 94.45 78.19 89.64 53

IOR, input to output ratio of network; FPS, frames per second. For methods; bold is used to highlight the proposed method. For results; bold is used to
highlight best results.

from DAM of stage S2 (i.e., point P2). The channel #s {1,2,3}
correspond to the ripe, unripe, and green class of strawberry,
respectively. It can be seen from Figure 7B that the heatmaps of

all the classes at point P1 gets further refined and have clearer
semantic meaning than those at point P2. Which shows the
effectiveness of incorporating the DAM on skip-connections.
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FIGURE 8 | Visualization of some semantic segmentation results on the SS1K dataset. (A) Raw images. (B) Ground truth. (C) Deeplab v3+. (D) Straw-Net (best
viewed in color).
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For better visualization, all the heatmaps in Figure 7 have been
rescaled to the same size.

Comparison With State-of-the-Art
Networks
In this sub-section, we compare the results of our network on
the SS1K dataset with other existing state-of-the-art models in
semantic segmentation. We evaluate all the models on different
benchmark metrics and report the results in Table 3 and Figure 8
shows some visual semantic segmentation results. All the values
reported in Table 3 are an average of 10 runs by default. Here
IOR represents the input image to segmented output ratio. All
the networks have a 1:1 ratio which means they output feature
maps of the same size as the input, except DAN (Fu et al.,
2019) and PSP-net (Zhao et al., 2017), their segmented output
is eight times smaller than the input. Intersection over union
value is averaged over all four classes. For precision and recall,
the values are reported for each class separately and are calculated
at a threshold of 0.75. It can be seen from Table 3 that our
Straw-Net outperforms all other existing networks overall for
real-time semantic segmentation of strawberry fruits. All the
metrics including frames per second (fps) are calculated for
512 × 512 resolution images, on a single Nvidia Titan RTX-
2080 GPU. From Table 3, it can be seen that our proposed
network, even though incorporating an attention mechanism is
much faster, requires less memory (GB) and less floating-point
operations (FLOPs) as compared to other attention networks like
DAN (Fu et al., 2019), BAM (Park et al., 2018), and CBAM (Woo
et al., 2018). On the other hand, compared to other existing state-
of-the-art segmentation models like Deeplab_v2 and Deeplab_v3
(Chen et al., 2017, 2018), our proposed approach is able to
achieve a highest mean intersection over union (mIoU) value
and comparable precision recall scores. The detailed architectures
of all the networks used for comparison are provided as
Supplementary Material.

Further Analysis
To analyze the results further and to see which classes confuse
the network resulting in lower performance, we plot a precision-
recall (PR) curve and confusion matrix of the final segmentation
results, as shown in Figures 9, 10. From the results we can
analyze the networks performance visually and see which classes
or features are highlighted by neurons. Moreover, it will also help
us to take precautionary measures to avoid inter-class confusions.
For instance, in Figure 9 the confusion matrix shows that the
network is more confused between ripe and unripe strawberries
rather than between unripe and green strawberries.

Another reason for this instability in confusion matrix is
data imbalance, as shown in Figure 4. Because, there are fewer
samples of unripe strawberries per batch as compared to the
other two classes. We can analyze the effect of this imbalance
from PR-Curves. We plot a PR-Curve for each class in Figure 10.
PR-Curves represent a trade-off between precision and recall at
different thresholds. The area under the precision-recall curve
is usually denoted as AUC (i.e., area under the curve). A high
value of AUC means high precision and recall. Whether we want

high precision or high recall depends on the application domain.
In Figure 10, ISO-F1 curves represents the lines in precision-
recall space which have the same F1-values. We can see from
Figure 10 that the AUC for unripe strawberries is much less
than the ripe and green strawberries which in turn means that
precision and recall values are also low for unripe strawberries.
Moreover, the micro-average curve represents the mean of PR-
Curves of all classes considering data imbalance. Whereas, the
macro-average curve represents the mean PR-Curve without
considering data imbalance.

FIGURE 9 | Confusion matrix for Straw-Net architecture for semantic
segmentation of the SS1K dataset.

FIGURE 10 | Precision recall curve obtained for Straw-Net architecture on the
SS1K dataset (Best viewed in color).
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TABLE 4 | Comparison of different system configurations on network’s (Straw-Net) inference speed.

System OS CPU Clock speed (GHz) GPU (Nvidia) FLOPS (Tera) Power consumption (Watts) FPS (sec)

Server Linux 18.04 Core i9-9940X 3.3 RTX-2080 14.2 – 53

Desktop PC Linux 16.04 Core i7-9700 3.0 GTX-1650 5.5 180 ∼ 300 28.9

Desktop PC Linux 16.04 Core i7-9700 3.0 None – 180 ∼ 300 13.8

Portable devices

Laptop0 Windows 10 Core i7-10750 2.6 RTX-2070 6.6 170 40

Laptop1 Windows 10 Core i7-9750 2.59 None – 70 6.32

Laptop1 Windows 10 Core i7-9750 2.59 GTX-1650 3.2 120 21.3

Laptop2 Windows 10 Core i5-8265 1.8 None – 48 3.38

Embedded systems

Nvidia Jetson TX2 Linux 16.04 ARM-Cortex A57 2.0 Pascal GPU 1.3 35 15.3

Real-Time Performance Barrier
Neurons in the human visual system can interpret 10 to 12 fps
and perceive them individually (Read and Meyer, 2000), whereas
higher frame rates are perceived as motion. To reduce eye strain,
the standard frame rate was set to be anywhere between 16 and
25 fps (Brown, 2014). Nowadays, all available video cameras have
the minimum frame rate of 24 fps (Brunner, 2021).

For example, let us assume that a camera is generating
24 fps and sending those frames as an input to the proposed
architecture, then the proposed algorithm should be able to
process all those frames within a second to produce an output
that is perceivable to the human eye. Therefore, if an algorithm
can achieve a speed above this threshold (≥16 fps) it is said to
have crossed the real-time barrier, where this limitation is mainly
generated by the human perception system. In the case of ASH,
if an algorithm has a processing speed of ≥24 fps it means that it
will generate outputs (i.e., strawberry segments) after processing
all the input frames. The processing speed of 53 fps was the
maximum frame rate that was achieved during the experiments
with the highest system configuration, i.e., RTX-2080 GPU and
Core i9-9940X CPU as shown in Table 4. In contrast, for most
sluggish situations, let us consider that a system can only process
3 fps (Laptop2 Core i5-8265 no GPU). In this case we might have
to quantize our frames so that the network can process them
before the next batch arrives. Thus, the statistical value of the
output generated by a 53 fps system would be higher than the
output generated by a 3 fps system.

TABLE 5 | Performance comparison for input images of varying resolution.

Metric Image resolution

256 × 256 512 × 512 1024 × 1024

mIoU (%) 85.31 88.79 88.21

mAP (%) 76.87 91.67 92.06

FLOPs (G) 3.6 14.6 58

Memory (GB) 0.46 1.8 7.19

Param. (M) 1.26 1.26 1.26

FPS (sec) 69 53 20

GPU used for comparison is RTX-2080 (Table 4). Bold is used to highlight the best
results.

Our model is adaptive, easily scalable, has a small
computational footprint of 14.6 GFLOPS (Table 3), and an
even smaller memory footprint of 1.8 GB (Table 3). Therefore, it
can be easily implemented on machines with low computational
power like laptops with (40 and 21.3 FPS) or without (3.38 FPS)
GPU or even on embedded systems like an NVIDIA Jetson TX2
board (15.3 FPS) without any loss in precision and accuracy.
Therefore, any system configuration in ASH operating at the
speed of ≥16 fps would overcome the real-time barrier and will
be suitable for autonomous harvesting.

Effect of Input Resolution
To demonstrate the effect of change in resolution on the inference
speed and precision of the network, we consider two more
resolutions in addition to 512 × 512, i.e., 256 × 256 (low
resolution) and 1024 × 1024 (high resolution). The results are
reported in Table 5 (all experiments were performed under the
same conditions).

From the results we can see that if we reduce the resolution
to 256 × 256 the computational complexity of the network is
reduced considerably, and the speed is increased. Moreover, there
is no significant decline in mIOU, but if we look at the AP, it
is decreased by 14.8%. In contrast, if we analyze the case of
high resolution (1024 × 1024), we can see that there is a little
increase of about 0.58% in the network’s performance, but the
computational complexity has exploded, and inference speed is
now considerably slower than the 512 × 512 version. Therefore,
we recommend using the 512× 512 resolution.

CONCLUSION

In this paper, a new dataset (i.e., SS1K) is introduced for the
segmentation of strawberries into four classes depending upon
the ripeness of the fruit (including a background class). The
proposed segmentation network named Straw-Net improves the
performance of ASHs in unconstrained and natural farming
environments. Also, a real-time attention mechanism (DAM)
is developed for integrating local and global semantic features
efficiently. DAM controls the flow of information between
the network’s encoder and decoder, enabling efficient feature
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fusion. Integrating adaptive feature fusion on skip-connections
results in improved segmentation and classification ability of the
network as shown by Segmentation Grad-CAM. The proposed
attention mechanism can be integrated with any existing DCNN
without any modification. By incorporating DAM in our
baseline model, we achieved a significant performance boost
while keeping the computational complexity to a minimum.
Moreover, the effectiveness of DAM is verified by performing
extensive ablation experiments. To verify the overall efficacy
of the proposed approach, we compared the results with
other attention mechanisms as well as with existing state-of-
the-art segmentation models. Results demonstrated enhanced
performance, i.e., improved mIoU, recall, and precision score
with the proposed method on the strawberry segmentation
problem. Our future work involves incorporating the proposed
approach with ASH for deployment in strawberry farms.
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