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Abstract
This paper presents the extraction of the emotional signals from traumatic brain-injured (TBI) patients through the analysis 
of facial features and implementation of the effective emotion-recognition model through the Pepper robot to assist in the 
rehabilitation process. The identification of emotional cues from TBI patients is very challenging due to unique and diverse 
psychological, physiological, and behavioral challenges such as non-cooperation, facial/body paralysis, upper or lower limb 
impairments, cognitive, motor, and hearing skills inhibition. It is essential to read subtle changes in the emotional cues of 
TBI patients for effective communication and the development of affect-based systems. To analyze the variations of the 
emotional signal in TBI patients, a new database is collected in a natural and unconstrained environment from eleven resi-
dents of a neurological center in three different modalities, RGB, thermal and depth in three specified scenarios performing 
physical, cognitive and social communication rehabilitation activities. Due to the lack of labeled data, a deep transfer learn-
ing method is applied to efficiently classify emotions. The emotion classification model is tested through closed-field study 
and installment of a Pepper robot equipped with the trained model. Our deep trained and fine-tuned emotional recognition 
model composed of CNN-LSTM has improved the performance by 1.47% on MMI, and 4.96% on FER2013 validation data 
set. In addition, use of temporal information and transfer learning techniques to overcome TBI-data limitations has increased 
the performance efficacy on challenging dataset of neurologically impaired people. Findings that emerged from the study 
illustrate the noticeable effectiveness of SoftBank Pepper robot equipped with deep trained emotion recognition model in 
developing rehabilitation strategies by monitoring the TBI patient’s emotions. This research article presents the technical 
solution for real therapeutic robot interaction to rehabilitate patients with standard monitoring, assessment, and feedback 
in the neuro centers.

Keywords Deep transfer learning · Emotion recognition · Traumatic brain injury (TBI) · TBI patients database · Cognitive, 
social, and physical therapy · Rehabilitation strategies · Human–robot interaction · Assistive care · Assessment and 
monitoring · Augmentative and Assistive Technology (AAT)

1 Introduction

It is challenging for people with traumatic brain injury (TBI) 
to communicate and socialize due to motor, hearing, and 
speech inhibitions. For rehabilitation and training purposes, 
TBI-patients are often treated in specialized neuro cent-
ers. Since 2015, our researchers have been working with 
a national neuro center with a focus on providing techni-
cal systems enhancing capability for the residents and to 
provide assistance and facilitation to staff members [27, 28, 
64]. The majority of the residents at the neuro center possess 
unique and highly diverse nature of impaired cognitive and 
behavioral abilities (for instance, apraxia and aphasia). As 
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some of these residents are unable to recover from their life-
altering impairments fully, the center provides full-time care 
and aid in organizing and supporting activities of daily liv-
ing (ADL). Providing such facilities is resource, labor, and 
expertise expensive. It also produces extra strain on the staff 
members to maintain the same level and standard of services 
to these residents. One technical means of lifting this burden 
is intelligent augmented and assistive technologies (AAT) 
that can be of help to maintain the quality of services and 
to facilitate staff members in developing and implementing 
rehabilitation strategies.

Researchers focus on providing assistance in naturals 
environments through ambient assisted living (AAL). AAL 
contributes in wide utility space such as from patients to 
social services, health workers to smart homes and multi-
agent systems with the aim to present a solution for inde-
pendent living in the user’s preferred living environment 
[12]. AAL aims to provide better quality of life for both 
elderly people and their care-workers. Recent advances such 
as the adoption of Internet-of-Things (IoT), cloud comput-
ing (CC), virtual and augmented reality (VAR), ambient 
intelligence (AmI) and neurorobotics have tackled the AAL 
solutions. According to [48], IoT technologies in the AAL 
domain are capable of catering to challenges related to ADL, 
elderly care, social dis-cohesion, personalized medication, 
physical activities, health tracking and various other applica-
tions. In addition, brain computer interface (BCI) systems 
contribute to improve the quality of life of elderly people by 
receiving and transmitting brain signals to external aids and 
VAR devices [3]. However, the major limitation of employ-
ing BCI systems involves wearable sensors mounted on the 
head to communicate signals to the linked devices, which 
restricts natural movement of the subjects under observation.

In the AAL domain, researchers have developed special-
ized AAT systems tailor-made for completion and facilita-
tion of specific tasks such as robots for surgical-operations 
[10, 75], healthcare robots for monitoring elderly people 
[63], social assistive robots for social engagement, e.g., for 
children with autism spectrum disorders (ASD) [7, 11, 66], 
or human–computer interfaces for assistance in daily tasks 
[63]. The AAT systems, specifically developed for elderly 
care or disabled people, employ different input signals to 
process information like audio, video, proximity, touch, and 
their combination is based upon the system application and 
environment. Over the past few decades, researchers are 
exerting special efforts to develop such systems with more 
human-like characteristics like social assistive robots (SAR), 
to assist in ADL. SARs can be integrated with emotional 
signal recognition and synthesis for natural and human-like 
interaction.

There are various ways to extract emotional signals, 
as one of the regions of the brain stem cell (amygdala) 
is mainly responsible for generating actions related to 

emotional arousal [1]. We can identify the activation of sig-
nals through this brain region by reactions visible through 
external and internal body stimuli. For instance, the amyg-
dala regulates the release of hormones in the bloodstream, 
controls the heart rate, blood pressure, skin conductance, as 
well as changes in facial expressions [54]. In a nutshell, we 
can determine these emotional cues by dilation of eye-pupil, 
electron flow on the skin (skin conductance), brain activ-
ity (electroencephalography (EEG)), magnetic resonance 
imaging (MRI), heart rate (electrocardiography (ECG)), and 
facial expression recognition (FER) [4] as demonstrated in 
Fig. 1. Many researchers focus on the various techniques for 
the rehabilitation of physical and cognitive impaired people, 
e.g., [67] establish a virtual reality exposure therapy (VRET) 
for managing stress reactions. Similarly, [37] develop a BCI 
system for the extraction of psychological signals of men-
tally impaired people using electroencephalography (EEG). 
For developing an affect-based system for use in rehabilita-
tion settings, the real challenge thus lies in the acquisition of 
emotional signals from people suffering from neurological 
disorders like patients with acquired brain injury.

Considering the challenges associated with this user 
group such as limited muscle movement or paralysis, non-
cooperative behavior, inappropriate responses, impaired 
reasoning, involuntary head, and upper body movements, 
mental inflexibility with non-compliance, agitation, loud 
verbalization and sometimes physical aggression, we 
decided to collect emotional signals in an unobtrusive 
manner through facial expression analysis [27–29]. Other 

Fig. 1  Emotional signal identification through various parameters; 
collection of data through multi-modal channels to analyze facial 
expressions
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methods to identify emotional signals have certain limita-
tions like the installment of sensors on the body, e.g., for 
identifying emotions through skin conductance, ECG, MRI, 
and EEG. Pupil dilation measurements involve an eye-track-
ing camera that must be placed close to the face without any 
occlusion, which is not possible due to limitations related to 
the physiology of the residents.

Therefore, considering the challenges mentioned above 
and complexities associated with TBI patients and aiming at 
capturing data in the natural environment, we extracted emo-
tional signals through facial expressions relying on Ekman’s 
definition of basic emotions. Ekman et al. described six basic 
expressions (anger, disgust, fear, happiness, sadness, and 
surprise) as universal basic emotional cues among humans 
[19]. Details of the data acquisition system in the specified 
scenarios, modified strategies for improved data quality and 
pre-processing techniques are mentioned in Sect. 3

The automatic recognition of facial expressions and 
interpretation as emotional cues can be utilized in a broad 
spectrum of socially and emotionally sensitive systems such 
as robots and virtual humans that engage with people in 
real-world contexts naturally. Since real-world frameworks 
encompass uncontrolled settings, where businesses operate 
in continuous altering circumstances such as occlusions, 
noise, illumination variations, diverging facial postures, and 
unwanted head and body movements. Therefore, systems 
that execute automatic analysis of human emotions must be 
robust to visual-data acquisition conditions, varying con-
texts, and the time of response.

In the past few decades, the performance of automatic-
facial expression recognition (A-FER) systems was limited 
to controlled conditions and posed expressions. These sys-
tems were exploiting facial information that is captured in 
laboratory environment with majority of induced expres-
sions such as Cohn-Kanade database [76], Cohn-Kanade 
extended database [46], MMI database [79], JAFFE data-
base [47], DISFA database [50], and DISFA extended data-
base [49] and therefore less prone to environmental chal-
lenges like illumination and occlusion, pose variation, and 
spontaneous expressions. Recently researchers are exerting 
extra effort to develop systems that could perform A-FER in 
natural circumstances. For this purposes, scientists have col-
lected database in-the-wild such as AFEW [15], SFEW [17], 
FER2013[23], ExpW [91], and BU-3DFE and BU-4DFE 
databases[84, 90]. In addition, emotion recognition chal-
lenges are carried out to address the challenges in real-world 
scenarios. However, researchers have illustrated that facial 
expression (FE) in naturalistic interaction thoroughly varies 
from the induced or posed ones [14, 29, 68, 87]. Addition-
ally, facial expressions of the TBI patients have additional 
artifacts such as facial paralysis, non-cooperation during 
data acquisitions, and large pose variation [28]. Therefore, 
these databases have the following limitations:

• The databases collected under controlled environmental 
conditions, with proper illumination and cooperative sub-
ject, contain frontal postures in the majority of images or 
minimal pose variation (Figs. 2, 3). However, acquiring 
data from real-life patients, suffering from brain injuries, 
is remarkably complex as patients are not cooperative, 
and it is quite difficult to have frontal postures. Moreo-
ver, facial databases captured in-the-wild have diverse 
features as compared to database captured in the labora-
tory environment. Therefore, FER systems trained under 
“controlled conditions” do not perform well in real-world 
applications. So it is essential to build a database of TBI 
patients in natural and unconstrained circumstances.

• Facial expressions of TBI patients significantly vary as 
compared to healthy people due to prolonged disabilities, 
paralysis, and continued state of depression. Researches 

Fig. 2  Sample database images captured in controlled conditions for 
facial expressions: Databases (rows top to bottom) CK+ , JAFFE, 
MMI and DISFA+ ; Emotion categories; (from left to right) Neutral, 
Happy, Sad, Fear, Surprise, Angry & Disgust (For CK+ contempt)

Fig. 3  Sample database images captured in uncontrolled conditions 
for facial expressions: Databases (rows top to bottom) FER2013, 
AFEW, SFEW, ExpW ; Emotion categories; (from left to right) Neu-
tral, Happy, Sad, Fear, Surprise, Angry & Disgust
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have associated the dominance of negative expressions 
with this user group [71]. Furthermore, existing FER 
databases have induced expression, that is different from 
natural expressions produced involuntary [14, 29, 68, 87].

• Some of the TBI patients have additional complexities due to 
facial paralysis, so their expressions are quite hard to extract. 
In addition, some of the facial-symmetry and facial bones of 
the TBI patients are misaligned due to the stroke. Images with 
such features are not available in current databases.

• Facial expressions of healthy people are easily distin-
guishable such as happiness, sadness, anger, fear, sur-
prise, disgust, and neutral. TBI patients do not have 
clear six expressions, but we find a prominence of only 
two to three expressions, usually the negative ones. It is 
essential for deploying affect-based intelligent interactive 
systems with these users that systems are trained on a 
specially dedicated database, developed in real environ-
mental conditions with all the complexities associated 
due to the brain injury and real-world challenges.

In this paper, we aim to address the limitations mentioned 
above by the development of a TBI patient database under 
natural, unconstrained, and uncontrolled conditions. This 
multimodal visual database is collected with RGB, thermal, 
and depth sensors in the specific scenarios to ensure uni-
formity and reliability in data collection. Database annota-
tion is performed by the neuro center staff members, experts, 
caregivers, physiotherapists, and doctors, who worked with 
a particular resident for more than six months. It contains 
a range of expressions from the residents performing daily 
activities like physiotherapy, cognitive rehabilitation activ-
ities, and social communication. We have collected 1723 
videos in 91 sessions, illustrating emotional reactions of 11 
subjects in three modalities: RGB, thermal, and depth.

There exists a vast range of emotional and facial expres-
sion recognition databases. However, they have limitations, 
mostly because data are acquired in controlled laboratory 
environments. Additionally, all of the existing databases 
are of healthy people with quite clear expressions that are 
remarkably different from brain-injured residents of the 
neuro center, who do not show the same variation in the six 
basic expressions. To reach more realistic and exact results, 
we developed the TBI patient database. As we know, learn-
ing deep NNs need massive labeled training data. So we 
applied a deep transfer learning model to utilize related data 
from other databases to help the training the model.

The main contributions of the paper are as follows:

• This research article focuses on the extraction of psycho-
logical signals of neurologically impaired people using 
transfer learning (TL) techniques that assist the care-
workers to monitor and assess the rehabilitation process 
with increased emotional efficacy.

• The research article contributes to designing a special-
ized framework for collecting consistent and reliable data 
from neurologically impaired people for social, physical, 
and cognitive well-being.

• We employed a deep architecture of CNN and CNN plus 
RNN to develop a FER model. This FER model is tested 
on CK+, MMI, JAFFE, FER-2013, AFEW, SFEW2.0, 
DISFA, and ExpW databases and competes with the 
state-of-the-art methods and outperforms some of them.

• It is demonstrated that the deep trained FER model is 
capable of recognizing emotions of people with facial 
paralysis in a natural environment, producing state-of-
the-art performances.

• Integrating the FER model with the SoftBank Pepper 
robot to recognize emotions helps the staff members and 
care workers to understand the emotional conditions of 
the residents better and adopt the rehabilitation and inter-
action strategies in real-time.

• Our findings indicate that the robot intervention with the 
residents of the neuro center enhanced the productivity 
of physiotherapy and social interaction.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of existing databases and related research 
in the field of facial expression recognition (FER) with the 
focus on natural data collection environment. Section 3 
explains the process of data collection of brain-injured 
patients in various scenarios. Section 4 presents the meth-
odologies implemented in our approach. Section 5 describes 
the experimental studies and result evaluation. Section 6 
illustrates the contribution toward rehabilitation strategies. 
Section 7 concludes the paper.

2  Related work

2.1  Current databases

Existing databases of facial expression recognition such 
as Cohn-Kanade (CK, CK+) [46, 76], MMI [79], CE [18], 
JAFFE [47], and BU-4DFE [84, 90] are developed in labo-
ratory and controlled conditions where subjects displayed 
distinctive facial expressions. These databases have high-
quality-based posed-expressions. However, non-posed and 
spontaneous expressions acquired in uncontrolled or in-the-
wild environments are quite different from posed expres-
sions. It is essential to identify non-posed expressions in a 
natural or uncontrolled environment for automatic affective 
computing. Thus, researchers focused toward data acquisi-
tion in-the-wild or uncontrolled settings such as AFEW and 
SFEW datasets [17], used in series of EmotiW challenges1, 
or FER-2013 [23], DISFA [50], DISFA+ [49]. These 

1 https:// sites. google. com/ site/ emoti wchal lenge/

https://sites.google.com/site/emotiwchallenge/
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databases encompass multimodal effects such as voice, bio-
logical parameters, and sequences of frames. However, due 
to the number of subjects, pose variation, and environmental 
settings, the range of diversification of these databases is 
minimal. We briefly describe the databases that are captured 
in-the-wild as well as in controlled settings (Tables 1, 2), 
used for emotion recognition, and will discuss their limits 
leading to the creation of the TBI database.

CK+ database The extended Cohn-Kanade (CK+) data-
base [46] is one of the most extensively used databases for 
FER systems. It is established in the laboratory or con-
trolled settings, with 593 image sequences of 123 subjects, 
of which only 327 are annotated with seven emotion labels 
(six basic emotions and contempt). The database consists of 
69% females and 31% males with an age range from 18 to 
50 years. The dataset contains posed and non-posed facial 
expressions at a maximum intensity level.

Table 1  An overview of the facial expression databases

Databases No. of 
Sub.

Samples Env. Nature (posed/spon-
taneous)

Expressions informa-
tion

Availability

CK+ [46] 123 593 image sequences Controlled (labora-
tory)

Posed and spontane-
ous

6 Basic expressions 
(with contempt) 
plus neutral

http:// www. conso 
rtium. ri. cmu. edu/ 
ckagr ee/

JAFFE [47] 10 213 Images Controlled (labora-
tory)

Posed 6 Basic expressions 
plus neutral

https:// zenodo. org/ jaffe

MMI [79] 25 740 Images 2900 
videos

Controlled (labora-
tory)

Posed 6 Basic expressions 
plus neutral

https:// mmifa cedb. eu/

DISFA [50] 27 89,000 images Controlled (labora-
tory)

Spontaneous AU-FACS (6 Basic 
expressions 
plus neutral (by 
EMFACS system))

http:// moham madma 
hoor. com/ disfa

FER2013 [23] N/A 35,887 images Web (in-the-wild) Posed and spontane-
ous

6 Basic expressions 
plus neutral

https:// www. kaggle. 
com/ fer20 13

AFEW [15] 330 1809 videos Movies (in-the-wild) Posed and spontane-
ous

6 Basic expressions 
plus neutral

https:// sites. google. 
com/ view/ emoti 
w2018/ home

SFEW2.0 
[16]

N/A 1766 images Movies (in-the-wild) Posed and spontane-
ous

6 Basic expressions 
plus neutral

https:// cs. anu. edu. au/ 
few/ AFEW. html

ExpW [91] N/A 91,793 images Web (in-the-wild) Posed and spontane-
ous

6 Basic expressions 
plus neutral

http:// mmlab. ie. cuhk. 
edu. hk/ proje cts/ socia 
lrela tion/ index. html

Table 2  Number of data images for each expression for the databases

Database CK+ JAFFE MMI DISFA AFEW2018 FER2013 SFEW ExpW

Image 
size

640 * 
490

720 * 
480

256 * 
256

720 * 
576

768 * 
1024

N/A 48 * 48 720*576 N/A

F-Exps Training Val Training Val Training Val Training Val
Anger 90 30 1959 436 118 59 4953 958 178 77 1272 318
Con-

tempt
36 0 0 0 0 0 0 0 0 0 0 0

Disgust 0 29 1517 5326 72 39 547 111 66 23 1250 312
Fear 50 32 1313 4073 76 44 5121 1024 98 47 329 82
Happy 138 31 2785 28,404 142 63 8989 1774 198 73 10,576 2644
Neutral 324 30 3034 48,582 129 61 6198 1233 150 86 8309 2077
Sad 56 31 2169 1024 104 59 6077 1247 172 73 2494 623
Surprise 166 30 1746 1365 70 46 4002 831 96 57 2471 617
Total 860 213 14,523 89,210 711 371 35,887 7178 958 436 26,701 6673

http://www.consortium.ri.cmu.edu/ckagree/
http://www.consortium.ri.cmu.edu/ckagree/
http://www.consortium.ri.cmu.edu/ckagree/
https://zenodo.org/jaffe
https://mmifacedb.eu/
http://mohammadmahoor.com/disfa
http://mohammadmahoor.com/disfa
https://www.kaggle.com/fer2013
https://www.kaggle.com/fer2013
https://sites.google.com/view/emotiw2018/home
https://sites.google.com/view/emotiw2018/home
https://sites.google.com/view/emotiw2018/home
https://cs.anu.edu.au/few/AFEW.html
https://cs.anu.edu.au/few/AFEW.html
http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/index.html
http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/index.html
http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/index.html
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MMI database The MMI database [79] is captured in the 
laboratory or controlled settings with 326 image sequences 
of 32 subjects. Two hundred thirteen image sequences are 
labeled with six basic expressions with onset-apex-offset 
states.

JAFFE The Japanese Female Facial Expressions (JAFFE) 
[47] database is captured in controlled conditions. It consists 
of 213 image samples of 10 female subjects. Each subject 
has 3–4 facial images with each of six basic expressions and 
one image with a neutral expression.

DISFA Denver Intensity of Spontaneous Facial Actions 
(DISFA) database [50] consists of 27 subjects captured 
with spontaneous expressions. It is coded with Action Units 
(AUs) ranges from 0 to 5 with zero corresponding to the 
absence of any activation of muscles, while five belongs to 
maximum intensities. We have employed the EMFACS con-
version system [22] to convert AU FACS codes to emotional 
expressions that presented approximately 89,000 images 
with a majority having neutral expressions.

EmotiW-AFEW-2018 Acted Facial Expressions in the 
Wild (AFEW) [17] and its subset Static Facial Expressions 
in the Wild (SFEW) [16] have been used as a benchmark 
dataset for annual emotion recognition in the wild challenge 
(EmotiW) challenge. AFEW is a multimodal-temporal data-
base containing facial expressions from movies and reality 
TV shows that are close to real-world scenarios. AFEW con-
sists of 330 subjects with an age range from one to seventy-
seven years (1–77 yrs). The annotation of this database is 
according to six basic expressions (anger, disgust, fear, hap-
piness, sadness, and surprise) and a neutral expression. The 
AFEW 7.0 dataset used in EmotiW 2017 consists of subject 
independent data partitions with training (773 samples), 
validation (383 samples) and test sets (653 samples).

SFEW Static Facial Expressions in the Wild (SFEW) [16] 
is developed by extracting few images from AFEW with 
varied head poses, close to real-life illumination conditions, 
age-range, and distinctive facial expressions. The SEFW 
2.0 is used in the EmotiW 2015 challenge, and it is most 
commonly used in general. The dataset is divided into three 
partitions: training set (958 image samples), validation set 
(436 image samples), and test set (372 image samples). Each 
image sample is assigned with one of seven basic expres-
sions, i.e., anger, disgust, fear, happy, neutral, sadness, and 
surprise.

FER-2013 The FER-2013 database [23] consists of 
approximately 36,000 images, labeled with seven emotion 
classes (six Ekman emotional states plus neutral expression). 
The database is established by using Google image search 
combined with phrases for gender, age, ethnicity, and 184 
emotion-related keywords. FER-2013 is one of the biggest 
databases for FER in-the-wild environment but with a low 
image resolution of 48 * 48 pixels leading to problems for 
facial landmark detectors.

EXPW The Expression in-the-wild (ExpW) database 
[91] is comprised of approximately 90,000 facial images 
downloaded from the web. Each of the images is manually 
assigned to one of the seven primary expressions.

Nonetheless, all the databases, as mentioned earlier, con-
sist of images of healthy people without any facial paralysis, 
cognitive or physiological impairments (Figs. 2, 3). Hence, 
there is a need for the development of systems dedicated to 
cognitive and physical impaired persons like TBI patients, 
based on natural, spontaneous, unposed, and uninduced 
facial expressions. To address these demands, we developed 
a database of TBI residents in natural and uncontrolled set-
tings, details provided in Sect. 3.

2.2  Current architectures for affect recognition

Automatic affective computing is a well-established research 
area, and there are a wide variety of algorithms and data-
bases to develop automated affect recognition mechanisms. 
We would like to briefly discuss state-of-the-art methods 
for emotion-related search on the databases explained 
in Sect. 2.1. Emotion recognition systems can be distin-
guished by the methods employed for feature extraction and 
feature classification. Most of the advanced FER systems 
are exploiting the techniques of convolutional neural net-
works (CNN) for facial feature extraction and classification 
(Table 3), as they provide state-of-the-art results for facial 
expression recognition [6, 9, 44], pain identification [6] and 
interpretation as emotional states [13, 80]. Conventional 
algorithms for affect recognition use handcrafted features 
such as pixel intensities [53], Gabor filters [8], local binary 
patterns (LBP) [69, 92], local quantized pattern (LQP) [78] 
and histogram of oriented gradients (HoG) [2]. Handcrafted 
features are accompanied by unintended features that have 
no or less impact on classification. In the case of hand-
crafted features, not all possible cases can be included for 
features selection and classification, so its performance is 
compromised.

The significant advantage of deep learning methods over 
conventional machine learning models is the simultaneous 
performance of feature extraction and classification. Moreo-
ver, deep learning methods apply iterative approaches for 
feature extraction and optimize error by back propagation, 
thus resulting in those critical features that human experts 
can miss while handcrafting the features. Recently used deep 
learning algorithms for FE and emotional analysis have dem-
onstrated a remarkable ability to learn features and achieved 
state-of-the-art results in a range of learning tasks like cross-
database evaluation where handcrafted features exhibit low 
performances due to lack of generalization to new scenarios. 
Moreover, deep neural networks perform remarkably well 
for subject independent estimation schemes of emotional 
expression recognition. This interdependence contributes to 
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the formulation of this paper, as the stability and reliability 
of the deep learning systems could perfectly align with the 
procedures required for clarifying complexity in emotion 
analysis in natural and unconstrained environments, mainly 
dealing with brain-injured patients.

Deep neural networks, notably CNNs, are well-estab-
lished approaches for researchers in the field of deep-vision 
for FER. In the FER-2013 challenge, [74] achieved the 1st 
prize by exploiting deep neural networks in two stages: use 
of CNN trained in a supervised way at a first stage and a 
second stage applying support vector machines (SVM) on 
the output of the trained CNN. Kahou et al. [31] winner 
of the EmotiW-2013 challenge, used the CNN and deep 
belief network (DBN) composed of two-stacked layers of 
restricted Boltzmann machines (RBMs). The first layer of 
RBM comprised Gaussian RBM with noisy ReLU, and the 

second layer Gaussian-Bernoulli RBM. This method worked 
well and managed to get the at-the-time state-of-the-art per-
formance but at higher computation cost for larger datasets. 
In 2014, [44] incorporated three tasks of feature learning, 
feature selection, and classification in a unified manner by 
employing Boosted Deep Belief Networks (BDBN) and 
managed to achieve remarkable results in challenging condi-
tions. The winner of the EmotiW-2014 challenge [43] com-
bined multiple kernels on Riemannian manifolds for emotion 
classification by the measurement of corresponding simi-
larities and distances. Researchers in [43] employed SVM, 
logistic regression, and least-squares models for emotion 
classification and applied decision level fusion. However, 
along with high computation cost for feature extraction, this 
method produced lower accuracy when exposed to challeng-
ing emotional categories.

Table 3  Summary of architectures and methods for affect recognition

Method Database Architecture

Mohammadi et al. [53] CK+, MMI Sparse representation classification, PCA-based dictionary build-
ing

Shan et al. [69] MMI, JAFFE Boosted local binary pattern (B-LBP) + SVM
Zhao and Zhang [92] CK, JAFFE Kernel discriminant isometric mapping (KDIsomap)
Liu et al. [43] EmotiW-2014 (AFEW) Multiple Riemannian kernels + SVM
Liu et al. [44] CK+, JAFFE Boosted deep belief networks (BDBN)
Yao et al. [82] EmotiW-2015 (audio–video) SFEW, AFEW Emotional expression relation and facial muscle activation unit 

(AU) with RBF kernel
Kaya et al. [33] EmotiW-2015

(audio–video)
AFEW, AFEW

Partial least squares regression (PLS) and kernel extreme learning 
machines (ELM) with multi-level weighted fusion

Ng et al. [55] EmotiW-2015 Transfer learning for deep CNN, pre-trained on the ImageNet 
dataset; cascading fine-tuning

Yao et al. [83] Emotiw-2016 HoloNet, CNN with concatenated rectified linear unit (CReLU)
Rodriguez et al. [65] CK+ VGG-16 + LSTM
Yan et al. [81] AFEW6.0, CHEAVD

(audio–video)
Multi-cue fusion; cascaded CNN and Bi-directional-RNN
CNN + SVM

Liu et al. [45] CK+, MMI, SFEW CNN with loss layers
Li et al. [42] CK+, SFEW, Deep locality-preserving CNN (DLP-CNN)
Zhang et al. [91] CK+, SFEW, FER-2013 CNN with multi-task network (MN)
Kim et al. [34] FER-2013 Discriminative deep CNN (DCNNs); alignment-mapping

networks (AMNs); CNN with network ensemble
Meng et al. [52] CK+, MMI, SFEW CNN with MN; identity-aware CNN (IACNN)
Yu and Zhang [85] SFEW CNN with network ensemble
Zhao et al. [93] CK+ Expression intensity-invariant network (EIN)
Yu et al. [86] CK+ Expression intensity-invariant network (EIN) + multi-task-CNN 

(MN)
Kim et al. [35] CK+, MMI Expression intensity-invariant network (EIN) with data augmenta-

tion, illumination normalization and face frontalization
Zhang et al. [89] CK+, MMI, Network ensemble with cascaded CNN and SDM
Kuo et al. [39] CK+ Applied FA network and Intraface
Sun et al. [72] MMI NE with GoogLeNet and SDM
Otberdout et al. [57] AFEW Deep CNN + symmetric positive definite (SPD) matrices
Fan et al. [21] AFEW CNN with VGG-LSTM and fusion techs
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Kulkarni et al. [38] demonstrated the good results to 
determine whether 6-class expressions are genuine or these 
facial movements are fake. He addresses the problem by 
projecting facial features in deeply learnt space. However, 
12 class and the binary emotion pair classification problem 
still remains a challenge. This is because the distinguishing 
factors between the unfelt and genuine expressions occur in 
a very short part of the whole emotion and are a challenge to 
model. Guo et al. [24] presented dataset with 50 classes of 
compound emotions for affective computing and geometri-
cally represented the landmark displacement to recognize 
emotions. However, it is challenging to determine dominant 
or complementary emotions. Yao et al. [82] explored the 
significance of the suppressed relationship between evolv-
ing characteristics derived from facial muscle motions. The 
particular relations and patterns between emotional expres-
sion and facial muscle activation unit (AU) are extracted 
and called it AU-Aware facial features. This method leads 
them to surpass the EmotiW-2015 challenge without using 
additional data. [33] applied two least-squares regressions, 
specifically partial least square (PLS) and Kernel extreme 
learning machines (ELM) with multi-level weighted fusion 
for emotional classification. One of the drawbacks of apply-
ing multi-level fusion with different input modalities audio 
or video could result in performance downgrading. [55] 
applied transfer learning techniques on a small dataset for 
static facial expression recognition in the wild, by pre-train-
ing their network on ImageNet dataset followed by fine-
tuning to target dataset and achieved comparable results.

In the year 2016, [83] applied a deep but computa-
tional efficient CNN with concatenated rectified linear unit 
(CReLU) and inception-residual structural for emotional rec-
ognition under unconstrained environment. In the year 2017, 
[65] exercised CNN to learn features from VGG-Faces and 
integrated with long short-term memory (LSTM) to gain the 
temporal information. This approach was further improved 
by [6], who applied deep CNN for features classification into 
expressions and fed the system with super-resolved facial 
images. [81] employed the cascaded CNN and RNN, where 
images are first fed into CNN for facial features extraction, 
followed by bidirectional RNN to learn the changes. One of 
the common aspects in the work of the [6, 55, 65, 83] the 
use of extensive annotated data of healthy people, captured 
in controlled and uncontrolled environmental conditions. 
Transfer learning can be applied to overcome the challenges 
of training CNNs that require large annotated training data-
sets of diverse expressions. Transfer learning overcomes the 
limited data problem by transferring image features learned 
with CNNs on large datasets to other visual recognition tasks 
on targeted, limited training data samples [56]. In the case of 
TBI database, transfer learning is applied to learn features 
from large-scale public datasets captured in varied environ-
mental conditions and distinct scenarios, with the presence 

of all expression states, to serve as a better weight initializa-
tion by fine-tuning.

The work in [55, 56, 65, 81] exhibited state-of-the-
art results for emotional challenges, but healthy subjects. 
Therefore, we investigated a similar approach for the TBI 
dataset. We employed CNN pre-trained to VGG-16 to learn 
the features from eight public databases and then by apply-
ing transfer learning approaches, fined-tuned to TBI dataset 
to overcome the identity and unbalanced emotional-data 
limitations.

3  Traumatic brain injured people database 
(TBI‑database)

3.1  Data acquisition

Data were collected at a neuro center that offers 24/7 reha-
bilitative care for their residents with brain injury. The goal 
was to record visual data from the residents in natural sce-
narios to extract emotional information. Due to the nature 
of their impairments, it is very complex to collect data for 
all expressions of anger, sadness, happiness, surprise, and 
disgust. Moreover, residents have diverse cognitive, physi-
cal, and interactive skills. Sometimes the residents demon-
strate physical and verbal aggression along with inappro-
priate responses. Most of the computer vision techniques 
for FER are dependent on data quality and environmental 
conditions like occlusion, lighting, and face pose and align-
ment. Considering these conditions, we collected the data 
in three different scenarios with the help of experts, trainers, 
and caregivers to have reliable and the best possible quality 
of the data in unconstrained scenarios. These situations are 
(a) cognitive rehabilitation strategies, (b) physical rehabili-
tation strategies, and (c) social interaction aiding strategies. 
Generally, a caregiver follows a set of protocols [5] for the 
rehabilitation tasks.

In order to deploy automated affect-based systems based 
on facial expressions, it is necessary to set up a signal per-
ceiving sensors-system, in our design RGB, thermal, and 
depth sensors. However, there is no extensive research 
explaining data collection methods for the FE of people that 
have suffered from TBI residents.

The studies in [58, 79] explained database creation and 
organization of healthy and cooperative subjects with spon-
taneous and induced expressions in a controlled labora-
tory environment or in-the-wild settings or through online 
websites. However, in the case of our residents, there is no 
database, or database development protocols, so we relied 
on data acquisition with rehabilitation protocols and then 
modified them after analyzing them carefully. We set up 
the data acquisition system with RGB, thermal, and depth 
cameras, placed at 1.5 meters distance from the residents 
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while performing their rehabilitation and social activities. 
Experts prescribe playing games as a therapy is the most 
effective way to aid brain injury recovery [20, 60, 70]. 
Researchers recommend five games for brain injury recov-
ery: Card games, Sudoku, Lumosity, TherAppy, and Tetris 
[61]. We modified these games, including other rehabilita-
tion activities to obtain optimal data for the training of a 
deep learning-based system; details are provided in the later 
Sects. 3.1.1–3.1.3

Data collection approaches are distinguished by the reha-
bilitation activities and the disability of the resident. We 
collected data from eleven residents. The precise nature of 
their disability is described in Table 4. Due to severe and 
diverse conditions of these residents with emotional instabil-
ity, experts plan strategies for their recovery based on their 
health conditions and neuropsychological test results [5, 77]. 
Furthermore, these residents have impaired facial and emo-
tional expressions, accompanied by frequent mood swings, 
low concentration (Table 4), and significant pose variations 
in regards to the capture of facial images.

It is also challenging to extract all six basic expressions, 
so to have useful facial video data, we altered the standard 
rehabilitation activities to gather more diverse information.

3.1.1  Cognitive rehabilitation strategy

The basic aim of this activity is to improve the ability of 
residents to understand and interpret information to per-
form specific functions mentally. Emotional stability is a 
key factor in this training; otherwise, residents will not be 
able to participate and get the advantage of these exercises. 
For this purpose, caregivers follow a set of protocols like 

Mini-Mental State Exam (MMSE)2 and Montreal Cogni-
tive Assessment (MoCA)3 comprised of repetitive activities 
with gradual increase in difficulty level, to assess the atten-
tion, memory [62], visuospatial perception [51], language 
and communication, function execution and learning abil-
ity of brain-injured residents [77]. These tasks are mostly 
accomplished through the use of calendars, drawing clocks, 
memory log or memory devices, alarms or reminders, read-
ing or listening to books, and playing games. The majority 
of these activities were performed on the paper placed on 
a table. During these activities, we encountered a couple 
of problems that resulted in poor data quality: a) subjects 
mostly looked downwards, b) frequent pose changes, and c) 
less attention. Hence, these rehabilitation tasks were tailored 
to the requirements of the residents in the following ways:

• Residents performed the tasks on a PC tablet, as men-
tioned earlier, that was placed in parallel to the cam-
eras, which resulted in more frontal facial images and 
increased attention.

• A favorite movie clip or cartoon character of a resident 
was displayed on the screen, and then residents were 
asked about the character or the story. This activity was 
repeated, and the cognitive assessment was monitored 
accordingly.

• Error-less (EL) learning was performed by instructing 
residents to sing lyrics of songs, match pictures, stack 
Lego bricks, and play computer games, which are of the 
subjects’ interest.

2 https://www.sundhed.dk/sundhedsfaglig/
 laegehaandbogen/undersoegelser-og-proever/skemaer/geriatri/
mms-mini-mental-status/
3 https://www.mocatest.org/

Table 4  Subjects in database along with challenges due to TBI, number of sessions and activities

Subjects No. of sessions Activities Challenges Prominent features

Cognitive Physio Social Body paralysis Speech inhibition Facial paralysis

A 12 4 4 4 Complete Yes Partial High anger
B 10 4 3 3 Left side No No High arousal
C 10 4 3 3 Lower body No No Excessive head 

movement
D 9 3 3 3 Partial No Partial Emotionally unstable
E 9 2 4 3 No Yes Partial Emotionally unstable
F 7 2 3 2 Partial No No High arousal
G 6 2 2 2 Lower body No No Excessive upper body 

movement
H 7 2 3 2 No No Partial Low arousal
I 6 2 2 2 Yes Yes Partial Low arousal
J 8 2 3 3 No No No Verbal and physical 

aggression
K 7 3 3 1 Partial Yes No Emotionally unstable
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• Sudoku is an organizational game with numbers, colors 
or alphabets, normally played on paper. Residents played 
this game electronically on the tablets placed at a prede-
fined location and orientation, resulting in frontal facial 
images. Most of the residents found the game apparatus 
comfortable, and there was a wide range of games from 
easy to hard difficulty providing the opportunity for train-
ers to monitor the learning skills of the resident at each 
level.

• Older residents preferred card games rather than playing 
digitally. Therefore, card games like Memory, Solitaire, 
Go-fish, and war were played with them. These games 
proved to be beneficial in recovery as they involve strat-
egy and thought processes with smaller challenges [61]. 
Regularly playing these games boosted memory skills as 
well as mathematical understanding, depending on the 
game. Cognitive skills assessors confirmed this result.

• We have introduced another application based game 
‘Lumosity’ for improved memory, problem-solving, 
and to speed-up processing. This app presents the range 
of brain training games based on the input information 
to improve learning skills. Residents showed a positive 
response to this app.

• Residents suffering from speech problems were asked to 
play TherAppy, an application based game developed by 
Tactus Therapy Solutions, created for residents’ language 
skills recovery. This game comprises of four modules 
for Comprehension, Naming, Reading, and Writing [73]. 
Residents were asked to recall the name of a picture, 
complete a phrase, or spell a word after listening to a 
short sound clip. Hints were available by clicking a but-
ton if a resident was struggling.

• Most of the residents exhibit negative expressions like 
sadness, depression, anger, or aggression more fre-
quently. In order to have other expressions like surprise, 
happiness, or joy, various games were created in such a 
way that intentionally lead to winning for the residents 
that resulted in more positive expressions.

Attention and memory enhancement are core elements in 
mental training. All these modified strategies were imple-
mented on eleven residents, generated less erroneous data-
base, and the residents exhibited more expressions and 
learning as compared to the custom exercises for cognitive 
skills recovery. Cognitive skills were evaluated by meeting 
goals and levels of mental-games applications. Performance 
evaluation is discussed in detail in Sect. 5

3.1.2  Physical rehabilitation strategy

TBI causes physical morbidity due to damage to the sensory-
motor system. Depending on the nature of the damage, it can 
cause reduced muscle movement and paralysis to the upper 

limb, lower limb, or complete body. Physical rehabilitation 
methods are planned case to case while considering age, 
gender, disability type, and post-concussion symptoms [26]. 
Additionally, assessment of activity tolerance (Table 4), 
balance, coordination, and postural control estimation are 
taken into account while conducting cardiovascular, mus-
cular-skeletal, and vestibular activities. Physiotherapists 
conduct these activities through preset operations like car-
dio exercises, using a treadmill, walking or mild running 
independently or with a trainer, cycling, push-ups, squats, 
and other related exercises after assessing the abilities of 
residents [26]. During all these activities, facial data are 
hardly available due to the excessive movement of the body 
or face. Therefore, to acquire the maximum facial data, we 
asked residents who do not have or have partial paralysis to 
perform physical exercises:

• Residents ride a stationary bicycle to have a static upper 
body as much as possible while looking at a tablet placed 
parallel to cameras. During the exercise, expressions 
were recorded.

• For residents who use wheelchairs, the tasks were 
designed accordingly, so they moved their chair forward 
and backward within three meters for multiple sessions.

• Activities such as hand press-ups, arm raises, and cup 
pick-up and placing were performed.

• Console video games were also introduced, which aided 
the movement of the resident arms and hands to a cer-
tain extent while playing. These games exhibited more 
explicit expressions and hand-eye coordination.

• Card games also helped with training dexterity and gross 
motor skills.

These activities resulted in useful data while enhancing the 
interest of residents throughout the therapy sessions.

3.1.3  Social rehabilitation strategy

Social rehabilitation is quite a complex and long-term chal-
lenge due to cognitive and behavioral disorders. Social 
reintegration strategies are based on individual cognitive 
progress, mental health, and behavioral distortions. In a 
standard scenario at the neuro center, the residents sit around 
a table over a cup of tea and share their daily activities. 
Often, residents do not take an interest, and trainers have to 
intervene by asking questions. Another observed problem is 
that residents with speech inhibition communicate through 
writing letters on tablets, which slows down communica-
tion and reduces interest. To overcome these challenges, we 
introduced the following activities:

• Firstly, we shared storybooks with the residents and 
asked them to read aloud to other residents of the neuro 
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center. Most of the participants did not take an interest in 
listening to the story due to poor storytelling skills and 
limited concentration.

• Secondly, we played card games with residents resulting 
in better interaction with the other participants as com-
pared to the storytelling activity.

• Thirdly, we utilized PS4 console games. Every partici-
pant showed interest individually or as part of a team. 
Most of the participants enjoyed Medal of Honor Air-
borne (MOHA)4, Need for Speed5 and similar games. 
When playing MOHA in two teams, participants of each 
team worked closely with each other, enhancing mutual 
interaction. They also expressed their emotions better at 
the different stages of the games.

These activities also helped in physiotherapy. However, it is 
still challenging to get all the emotional states due to non-
cooperation, traumatic disabilities, and other social and tech-
nical issues; therefore, we have further classified the expres-
sions into positive and negative expressions [28].

Data are collected in multiple phases throughout 91 ses-
sions, as presented in Table 4 with RGB, thermal, and depth 
sensors. In total, we collected 1723 video events, each of a 
maximum of 5 s in length.

3.2  Data annotation

Furthermore, for accurate annotations, only those experts 
or trainers were consulted who worked with these residents 
for more than three months and have at least ten months of 
experience dealing with residents that suffered from brain 
injury. Experts annotated the videos manually and then later 
verified when image sequences are split into various catego-
ries. Various pre-processing steps are applied to develop a 
high-quality facial database; details are provided in Sect. 4.

4  Methodology

In this section, we describe the three main steps for the 
automatic recognition of facial expressions (FE), i.e., pre-
processing, facial feature learning, and facial features clas-
sification. The algorithms explored and state-of-the-art 
implementations for processes, as mentioned earlier, are 
presented below:

4.1  Pre‑processing

Pre-processing is a vital step to avoid unwanted features 
for facial expression recognition, such as illumination 

variations, background clutter, and different head poses. 
Therefore, to ensure the learning of only essential features, 
we applied the following pre-processing algorithms before 
exposure to neural networks training for the formation of a 
high-quality facial data log.

4.1.1  Face‑alignment

The first step for FER tasks is face detection to remove back-
ground and non-relevant features. Viola-Jones (VJ) [30] is 
a classical method, widely used for face detection that is 
robust and accurate for frontal faces. However, the algo-
rithm exhibits lower performance in natural and in-the-wild 
environments, where faces are not always frontal, produc-
ing false detection. To achieve higher quality data, we have 
used the dlib-CNN-face detector [36] that has surpassed VJ 
for face detection, under unconstrained and natural environ-
mental conditions with significant pose variations [88]. In 
addition, for further face alignment, we have estimated the 
facial landmarks through a cascaded regression method, i.e., 
supervised descent method (SDM), which tracks 49 facial 
points and reduces the variations and in-plane rotation.

4.1.2  Illumination and pose normalization

Deep neural networks are sensitive to illumination and con-
trast, which can lead to significant intra-class variations 
even when the images of the same person displaying the 
same expressions have different contrast and illumination. 
We have employed histogram equalization combined with 
illumination normalization, as this method has produced 
state-of-the-art results in the literature of FER [41]. Another 
challenge, associated with unconstrained and natural set-
tings, are facial images with large pose variations. We have 
employed the pose normalization technique that produces 
frontal views, where landmarks are calculated with arbitrary 
facial positions, and by finding the inverse of the transpose 
matrix, the face is frontalized [25].

4.2  Deep learning architecture for feature learning 
and transfer learning (convolutional neural 
network)

Our work is focused on the emotion cues from images and 
sequences of images. Convolutional layers are richly embed-
ded with spatial information. We have used the features from 
convolution layers instead of fully connected layers and 
transferred to the target database for fine-tuning. To take 
advantage of temporal information, we have utilized the 
long short-term memory (LSTM) network to consider the 
sequences of CNN actuations explicitly. CNNs like VGG-
16 and AlexNet, which are pre-trained on ImageNet, can be 
used as a feature extractor.5 https:// www. ea. com/ games/ need- for- speed

4 https:// www. ea. com/ games/ medal- of- honor

https://www.ea.com/games/need-for-speed
https://www.ea.com/games/medal-of-honor
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Spatial feature extraction In order to make full use of 
static databases, we have used VGG-16 architecture for 
dimensional feature extractions. The VGG-16 is the deep 
convolutional network with up to sixteen layers (thirteen 
convolutional layers and three fully connected layers). This 
network takes an input image size of 224 * 224 pixels, with 
a convolutional kernel size of 3 * 3 and max-pooling with 
2 * 2 windows. We used the pre-trained VGG-Face [59] 
architecture to initialize the network parameters that are 
trained on a massive facial dataset of 2.6 million images. 
We assume that databases that are captured in controlled and 
uncontrolled environmental conditions with posed as well as 
spontaneous expression are involved, and we use the transfer 
learning strategy to transfer the “information” learned by 
the VGG-model to our new target dataset of neuro center 
residents suffering from brain injuries for emotional cues 
identification. Transfer learning can be used to avoid overfit-
ting in the training of our network (Fig. 4), considering the 
TBI database is too limited in terms of identities of subject 
to train a generalized network. 

The LSTM for temporal information extraction In gen-
eral, CNNs deal with images that are isolated. However, in 
our case, we have used sequences of images as well, thus 
preserving the temporal information. LSTM models are 
capable of absorbing this dynamic sequential information. 
The LSTM modules can determine long-range temporal cor-
relations from the input sequences by using memory cells, 
which can hold and release information.

As illustrated in Fig. 5, the LSTM states are controlled by 
three gates associated with forget (f), input (i), and output (o) 
states. These gates regulate the flow of information through 

the model by using point-wise multiplications and sigmoid 
functions � , which bind the information flow between zero 
and one by the set of mathematical equations as explained 
in [27, 28].

The datasets used to train the CNN were chosen from the 
benchmark datasets publicly available or made available to 
the research community, and they are described in Sect. 2.1.

Fig. 4  Transfer learning model architecture

Fig. 5  LSTM architecture with memory unit
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4.3  Transfer learning mechanism

In the current research project, we have to deal with lim-
ited labeled and identity data from people that suffered a 
traumatic brain injury. However, learning processes in deep 
neural networks need lots of labeled training data. Gather-
ing training data and labeling it is very difficult and time-
consuming work. So, for gaining more accurate results, we 
make use of new techniques such as transfer learning.

Transfer learning is a powerful technique which adapts 
knowledge from some related auxiliary well-labeled source 
domains. Considering the benefit of transfer learning, we can 
use labeled data that was gathered with healthy subjects to 
optimize target data. In general, transfer learning methods 
categorize into two groups: domain-invariant feature learn-
ing and classifier adaptation. In this paper, we applied an 
in-depth transfer learning approach to unify the knowledge 
transfer and deep feature learning.

Since the input of our architecture is image frames and 
image sequences, we had implemented the learning of fea-
tures in two ways: firstly by the use of only static images and 
transferring the knowledge to the TBI datasets; secondly 
exploiting the dynamic features of video data, as the varia-
tions between image sequences encode additional advanta-
geous information for the classification of emotional signals.

Similar to the work in [55, 65, 81], we employed the 
VGG-16 model to initialize the network parameters and 
learn the features from eight public databases. Since the 
bottom layers of CNNs learn more generic features and 
top layers acquire more sophisticated and data specific 

information[32], we reserved only the convolutional and 
max-pooling layers and discarded the pre-trained last three 
fully connected layers. We removed fully connected layers 
as they do not hold spatial information (Fig. 6), which is 
essential for the capture of motion signals in the subsequent 
LSTM model. Therefore, the last pooling layers of the CNN 
framework are linked directly to the LSTM to investigate the 
temporal characteristics across coherent images.

5  Experimental results

In this section, we evaluate the performance of our proposed 
model in two ways: first, by the domain transfer learning of 
static as well as dynamic databases to our target TBI data-
base; second, by evaluating the emotional cues learned and 
transferred from controlled and uncontrolled environmental 
conditions to the TBI datasets. A static dataset refers to the 
image frames, whereas dynamic relates to the sequences of 
images or video sequences.

5.1  Experimental results evaluation for static 
datasets

The facial images are resized to 224 * 244 pixels according 
to the network-input parameter. Peak expression frame is 
used for training of the network for CK+, MMI, DISFA+ 
datasets. JAFFE, FER2013, SFEW, ExpW have mostly one 
to four images per expression. Video datasets are first con-
verted into 30 frames per second by an open-source video 

Fig. 6  Databases explored for transfer learning
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converter, and then the peak expression image is selected. 
Data are distributed 80% for training and 20% for testing 
purposes. The network is trained with a learning rate of 
0.0001, and batch normalization is applied to normalize the 
input layer.

Figure 7 illustrates the performance of our models trained 
on eight different datasets. We can identify that recognition 

performance of contempt is not good as compared to other 
expressions through the confusion matrix in Fig. 7a. Besides, 
we can determine that fear and disgust emotion expressions 
are less accurate, as demonstrated by the confusion matrix 
in Fig. 7c. However confusion matrix of datasets captured 
in controlled environment Fig. 7a–d have much higher per-
formance than of in-the-wild setting databases as evident in 

Fig. 7  Performance visualiza-
tion of the models trained on 
eight source databases using 
image frames
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Fig. 7e–h for emotional categories. The overall accuracies 
of our proposed network are compared with other state-of-
the-art methods, as seen in Table 5, and it is observed that 
our model has performed competitively well.

5.2  Dynamic database

The temporal information exploration is analyzed on four 
publicly available datasets, namely CK+, MMI, DISFA+, 
and AFEW. The performance of fine-tuned VGG-face model 
is compared with state-of-the-art methods in Table 6. It is 
clearly observed that in the case of the DISFA+ dataset, 
our network has produced better results. Similarly, our net-
work has surpassed the state-of-the-art methods in case of 
AFEW dataset, when tested on the validation set. For CK+ 
and MMI datasets, our fine-tuned model produced decent 
and competitive results. The confusion matrices to represent 
the accuracies of seven emotional categories are illustrated 
in Fig. 8. Figure 9 represents the performance of our archi-
tecture employed to static and dynamic datasets. It is evident 
that temporal information has increased the performance of 
the network.

5.3  Contribution in emotion recognition

In the second stage, the target ‘TBI datasets’ are fine-tuned 
with pre-trained and tuned VGG-face model with the above-
mentioned publicly available datasets, in both static and 
dynamic formats. Despite the challenges of less-expressing 
and limited-identity datasets, fine-tuned model exhibited the 
comparable results. In our experimentation, we executed sin-
gle-source-single-target transfer learning, that is individual 
source dataset features are transferred to TBI dataset and 
then emotions are classified. Our network learned the facial 
features related to the specific emotional category of healthy 
people and explored those characteristics into facial features 
of TBI-datasets.

5.4  Evaluation metric

We evaluated the performance of our framework using eval-
uation matrices to fully understand the model efficacy. Con-
fusion matrices, precision, recall, Area under curve (AUC), 
and the average accuracy present the performance of our 
model to recognize subtle emotional changes. We calculated 
multi-class confusion matrices for both static and dynamic 
datasets as well as before and after fine tuning to the target 
datasets as shown in Figs. 7, 8, 11, and 12.

To understand the strength of each dataset for a particu-
lar expression category, we employed precision and recall 
matrices as illustrated in Table 7 and Table 8. Results dem-
onstrate that dataset captured in the wild such as AFEW, 
SFEW, and ExpW have lesser accuracy for disgust, fear and 
surprise expressions. However, FER2013 performed quite 
well for the same expressions. We identified that mis-clas-
sification of these emotions could be due to a lower num-
ber of such expressions in the datasets under analysis. A 
trend of increase in accuracy for each emotional class is 
witnessed with an increase in number of frames. Overall, 
the precision-recall matrices work in relationship; precision 
indicate the ability of model to determine only relevant data 
points whereas recalls verify that determined data points are 
actually relevant.

As given in the equations, we determined accuracy, preci-
sion and recall:

(1)Accuracy =
TP + TF

TP + TF + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

Table 5  Performance evaluation of our (VGG-FineTuned) model for 
emotional categories for static datasets with other results in the litera-
ture in terms of average accuracy

Bold values highlight the maximum accuracy achieved by a certain 
method on a specific dataset. We have also highlighted our results to 
show they have achieved either state-of-the-art performance or com-
peted well with other state-of-art methods

Group Method Training
Parameters

Accuracy (%)

CK+ Liu et al. [45] Eight folds 97.1
Zhang et al. [91] Ten folds 98.9
Our Ten folds 98.6 ± 0.59

JAFFE Liu et al. [44] LOSO 91.8
Our Ten folds 89.46 ± 1.75

MMI Liu et al. [45] Ten folds 78.53
Li et al. [42] Five folds 78.46
Our Ten folds ��.06 ± �.88

DISFA+ Our Five folds ��.15 ± �.92

FER 2013 Zhang et al. [91] Training 28,709
Validation 3589
Test 3589

Test 75.1
Tang [74] Test 71.2
Kim et al. [34] Test 73.73
Our Training 35,887

Validation 7178
Val ��.19 ± �.47

SFEW Li et al. [42]  Training 958,
Validation 436,
Test 372

Val 54.19 (47.97)
Meng et al. [52] Val 50.98 (42.57)

Test: 54.30 (44.77)
Yu and Zhang 

[85]
Val 55.96 (47.31)
Test 61.29 (51.27)

Our Val 55.75 ± 2.74
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where TP, TN, FP, and FN are the overall true positive, true 
negative, false positive, and false negative of all the classes 
in the confusion matrix. In other words, the overall accu-
racy was the sum of off-diagonal elements divided by all 
the elements in the multi-class confusion matrix. Table 5 
demonstrates the performance of our model on static source 
datasets. It is evident that our model has performed better 
with accuracy of 79.06% and 78.19%, surpassing 78.53% 
and 73.73% on MMI and FER2013-validation dataset, 
respectively. On the rest of datasets, our model competed 
state-of-art-methods while measuring frame-based accura-
cies. On contrast, our model with sequential information 
has fared well surpassing recognition accuracies by 94.09% 
and 50.17% on the DISFA and the AFEW datasets respec-
tively as presented in Table 6. We have used average accu-
racy metric due to imbalanced emotional data as mentioned 
in Table 1. For additional performance measure, statistical 
significance of emotional recognition is verified by t-test 
conducted on all datasets.

Figure 9 provides the illustration of overall performance 
of the network exploiting the static as well as temporal 
information from the various source datasets. It also dem-
onstrates the performance of the network on the target TBI 
challenging dataset after fine-tuning with source datasets. 
It is evident from the results that use of temporal informa-
tion have enhanced the accuracy as it is evidenced through 
AUC metrics in Fig. 10, where static and temporal infor-
mation are considered in the model training. In addition, 
fine-tuning with various source datasets exhibited that per-
formance is dependent on two factors: One is more training 
data facilitates better in transfer of features and secondly, 
features related to negative emotions are learnt better from 
the datasets captured in controlled settings. It is seen from 
the confusion matrices in Figs. 11 and 12, that accuracy of 
emotional expressions of anger, contempt/disgust and fear 
is better when fine-tuned with CK+, MMI, and DISFA+ as 
compared to AFEW.

Table 6  Performance evaluation 
of our (VGG-finetuned) model 
for emotional categories for 
dynamic datasets with other 
results in the literature in terms 
of average accuracy

Bold values highlight the maximum accuracy achieved by a certain method on a specific dataset. We have 
also highlighted our results to show they have achieved either state-of-the-art performance or competed 
well with other state-of-art methods

Group Method Training
Parameters

Accuracy (%)

CK+ Zhao et al. [93] Training: 7 to last frame
Test: last frame; Ten folds

99.3

Yu et al. [86] Training: 7 to last frames
Test: peak expression;
Ten folds

99.6

Kim et al. [35] All frames used in
training and testing;
Ten folds

97.93

Zhang et al. [89] All frames used in
training and testing;
Ten folds

98.50

Kuo et al. [39] 9 frames for training
and testing; Ten folds

98.47

Our Ten folds 98.92 ± 0.32

MMI Kim et al. [35] LOSO 81.53
Zhang et al. [89] All frames for training

and testing; Ten folds
81.18

Sun et al. [72] Ten folds 91.46
Our Ten folds 85.89 ± 1.52

DISFA+ Zhang et al. [89] All frames for training
and testing; Ten folds

93%

Our Ten folds ��.09 ± �.77

AFEW Otberdout et al. [57]  Training 773,
Validation 373,
Test 593 videos

Val 46.32
Test 49.59

Fan et al. [21] 45.43 on Val
Fan et al. [21] 59.02 on test
Our Val ��.17 ± �.68
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Fig. 8  Performance visu-
alization of models trained on 
four source databases using 
sequences of images

Fig. 9  Source versus target 
datasets accuracy comparison: 
Illustration provides the per-
formance of the network when 
static and temporal information 
from both source and target 
datasets is utilized. For CK+, 
MMI, DISFA+ and AFEW 
datasets we have used both 
static and dynamic information, 
whereas for SFEW, JAFFE, 
FER2013 and ExpW static 
information is explored

6  Insights on emotion recognition 
in the rehabilitation of TBI patients

The rehabilitation phase usually requires four steps [40]. 
First, the impairment type and its severity must be tested. 
Second, the therapist set rehabilitation goals. Third, the 
rehabilitation intervention takes place. Finally, following 
the intervention, the patient has to be re-evaluated, allowing 
to adjust the objectives. Robots have the potential to assist 
and promote rehabilitation procedures. They can be used to 
measure performance prior, during and after an intervention 

as well as systematically and continuously suggest treatment 
strategies based on this input and the severity of the dis-
ability. The intervention of the Pepper robot integrated with 
customized emotion recognition module assisted the reha-
bilitation process for the TBI patients in the four phases, as 
mentioned earlier. In our field study, first, we studied the 
impairment severity of each patient, and pre-set targets were 
defined and tested during and after the intervention of the 
pepper robot. In our case, we distribute the pepper robot 
assistance in two categories; robot as a monitoring agent and 
as a feedback agent for both patients and therapists.
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6.1  Pepper robot as a monitoring agent

The intervention with the Pepper robot has been designed to 
in relation to the three scenarios used during the data collec-
tion: cognitive, physical and social interaction rehabilitation. 
The first phase involves the determination of the impairment 
level for each scenario. It is determined with the set of pro-
tocols and disability condition as mentioned in the table 4. 
In our pilot study we determine the emotional expressions 
before, during and after each rehabilitation strategy. Before 
the deployment of the pepper interventions, the data col-
lected was extremely beneficial for the clinician and thera-
pist to evaluate how cognitive learning, physical movement 
and social interaction patterns can be affected with changes 
in the expressions. For example, in cognitive rehabilitation 
tasks, subjects tend to make mistakes when there are more 
negative emotional expressions. Therefore, in such a case, 
the performance of the subject declines. Similarly, patients 
are hesitant to involve or sometimes resist to indulge in 
physiotherapy tasks when they are tired or exhibit negative 
emotions. In such a scenario, the therapist failed to achieve 
targets, set for the rehabilitation exercise. In case of social 
interaction activity it is observed that passive stimulus is 
required to enhance social interaction, where subjects hardly 
communicate with other subjects or passively communicate 
with therapists.

6.1.1  Monitoring negative emotional reactions

Research conducted in [27] illustrates that to achieve the 
best results, it is essential to determine the emotional states 
of the patients prior to conducting a rehabilitation exercise. 
This would have a large impact on an effective rehabilitation 
as therapists could save time and effort and eventually adapt 
rehabilitation strategies based on the emotional conditions of 
the patients. For this purpose, the Pepper robot intervention 
facilitates the staff members and therapists to determine the 
emotional states before, during and after the rehabilitation 
tasks. In addition, Pepper generates reactions according to 
an individual patient’s emotional state to assist in achieving 
the targets set for the rehabilitation exercise.

6.1.2  Handling negative reactions

In our pilot study, Pepper uses audio, visual and gesture 
output to handle negative emotional reactions generated by 
the patients during rehabilitation tasks. The robotic inter-
vention impacted positively on physical rehabilitation but 
negatively on cognitive activity. In case of physical reha-
bilitation, patients were motivated to execute more repeti-
tions of tasks. However, patients find the Pepper robot inter-
vention distracting during the cognitive tasks. This is due 
to the fact that during cognitive activity, Pepper identified 
their focused-emotional reactions as negative expressions 

Table 7  Precision matrix for 
each expression class for source 
datasets

Precision

Expressions CK+ JAFFE MMI DISFA AFEW FER2013 SFEW ExpW

Anger 96.67 90.01 78.87 69.72 77.55 79.31 77.78 74.49
Contempt 88.89 – – – – – – –
Disgust – 82.76 67.56 64.814 18.5 68.68 29.59 66.03
Fear 96 93.75 66.79 72.91 16.32 61.45 24.51 33.67
Happy 98.56 96.77 83.95 81.03 83.83 92.89 88.64 83
Neutral 98.76 90 85.13 83.54 83.67 73.77 82.89 81.25
Sad 94.64 93.55 77.82 73.63 48.45 64.57 57.60 71.38
Surprise 96.75 93.32 77.42 71.42 20.40 87.60 32.85 70.47

Table 8  Recall matrix for each 
expression class for source 
datasets

Recall

Expressions CK+ JAFFE MMI DISFA AFEW FER2013 SFEW ExpW

Anger 94.56 93.10 75.95 71.53 50.67 66.95 57.48 62.39
Contempt 86.48 – – – – – – –
Disgust – 82.66 63.86 66.96 66.67 90.66 70.31 82.5
Fear 94.56 88.91 61.24 5574 64.21 7.64 61.53 84.22
Happy 97.84 93.75 85.76 92.23 70.33 83.63 72.13 79.04
Neutral 98.43 93.01 90.98 95.68 37.61 65.17 43.38 55.03
Sad 96.36 91.31 79.92 23.32 44.34 70.01 50.96 60
Surprise 98.77 93.33 75.98 17.74 48.75 82.07 59.25 79.57
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and reacted accordingly. We implemented a Wizard-of-Oz 
(WoZ) functionality to recognize behavioral traits in humans 
to equip the Pepper robot with intellectual cognitive abilities 
in decision making as well as in creating good relationships 
with its human user. The WoZ feature aids the therapists 
to achieve the rehabilitation targets during cognitive task 
execution and also supports building a reliable relationship 
between robot and human user.

6.1.3  Performance monitoring

Pepper records each rehabilitation session and generates a 
pool of expressions over time as illustrated in Fig. 13. The 
pool of expressions determines the accuracy over the rate 
of change of expressions from positive to negative and vice 
versa. In our pilot study, we analyzed subjects exhibit posi-
tive expressions while accurately execution of the physical 
and cognitive tasks. In case of cognitive assessment, pool of 
expressions are also compared with the results of Android 

application “Luminosity” that keeps the track of accuracy 
over the entire session as well as for repetitive tasks for each 
individual subject. These results also confirmed the exhibi-
tion of positive expressions with accuracy of tasks accom-
plished. During physiotherapy, Pepper acted as a “motiva-
tor” that resulted in more repetitions of physical activity 
during a session for the majority of the patients. The number 
of robotic reactions in response to positive emotional expres-
sions is directly proportional to the number of repetitions 
executed in a given session. For instance, in our case study 
when pepper robot is placed with the subject, number of 
reps for physiotherapy were increased significantly so the 
Pepper reactions to acknowledge the effort and motivate the 
subject. Figure 14 illustrates the Pepper robot interaction 
with a subject while executing the physiotherapy activity.

6.2  Pepper robot as a feedback agent

Conventional evaluations involve one-on-one consultations 
with a therapist. Employing Pepper supports this approach 
with an objective evaluation of motor and cognitive func-
tions utilizing data obtained during rehabilitation sessions, 
thus, allowing for accurate, effective, and automated evalu-
ation of motor and cognitive abilities independent of human 
biases. In addition, audio, visual and gesture output of the 
Pepper robot during the activity, can provide information 
about patient-activity-engagement and attention time-span. 
Attention span of TBI patients is generally low, however, 
with robotic intervention this issue can be minimized using 
emotional expression information, where a therapist need to 
modify the activity to maintain the interest of the subject. 
This feedback with robotic output and pool of expressions 
enable the therapists to modify the treatment according to 
patient involvement and performance.

6.3  Challenges and limitation

We will discuss challenges and limitation related to emo-
tion analysis system and robotic platform and rehabilitation 
strategies involved as follows.

Comparing the facial expression recognition accuracy 
with others work is quite challenging as different research-
ers adopt different databases with varying pre-processing 
techniques and training techniques. Despite we do perfor-
mance comparisons with methods explored and average 
accuracy achieved. We need to consider the balanced and 
imbalanced data within expression categories for metrics 
evaluation. Table 7 and Table 8 presents the performance 
variance of network with varying data classes. Therefore, it 
is necessary to apply relevant evaluation matrices for system 
performance analysis.

Although the treatment for rehabilitation through robotic 
interventions have been proven to be beneficial, in most 

Fig. 10  ROC curves for emotion recognition through frame-based 
and sequence of images based information



 Pattern Analysis and Applications

1 3

facilities they are not yet part of standard care. This is mainly 
due to the fact that most studies have been carried out with 
non-mass-developed robotic devices, even though commer-
cially produced social rehabilitation robots are becoming 
popular, but their costing rise significantly. Along with the 
need to include more people with clinical rehabilitation 

substantial attempts are now being made to create and imple-
ment low-cost tools that mitigate direct therapist oversight. 
In the neuro centers, a big obstacle for introducing robot-
assisted therapy is that the patient must be able to adhere 
with the recommended procedure. The patient adherence 
to recommended treatments in therapy is correlated with 

Fig. 11  Performance visualiza-
tion of models fine-tuned to the 
target TBI database using image 
frames
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both decreased compliance and improved treatment out-
come. However, lack of desire to do the workouts is one of 
the key reasons for the inability to adhere. Introduction of 
more engaging interface such as utilization of the Pepper 
robot display, synchronized with robotic gestures and audio 
framework could contribute toward persistent motivation. In 
addition, where patients impairments are severe, the system 
can respond by allowing the therapist taking control over the 
robotic intervention to modify the treatment.

7  Conclusion

In this work we have contributed in two phases, first toward 
the development of emotion recognition algorithm for TBI 
patients and second the deployment of the robotic framework 
for rehabilitation of the TBI patients through the implemen-
tation emotion recognition model. For emotion recognition, 
we have introduced a deep learning framework that is trained 
to learn the facial features from the datasets acquired in con-
trolled and uncontrolled environment to address two major 
issues in automatic facial expression recognition. The first 
problem that we address in this work is non-uniform display 
of human facial expressions. For instance, in case of TBI 
patients where facial expressions are variant due to artifacts 
caused by impairment severity. Employing CNN and CNN-
LSTM algorithm, we transferred static and dynamic facial 
characteristics related to each expressions to TBI patients 

database having limited identities. One the one hand, our 
methods have achieved the state-of-the-art performances on 
specific datasets in both frame-based (static) and sequence 
of frames-based (dynamic) emotional recognition. Our 
model has improved the accuracy on various datasets, for 
instance 78.53% to 79.06% on MMI and 73.73% to 78.19% 
on FER2013 database in static analysis. Similarly, use of 
temporal information had enabled the network to exhibit 
state-of-the-art performance on DISFA and the AFEW with 
94.09% and 50.17% accuracy results respectively as pre-
sented in Table 6.

On the other hand, our experimental studies reveal that 
certain facial expressions like anger, fear contempt/disgust, 
sad and surprise are learnt better from the databases that 
possess features with frontal faces such as CK+, MMI and 
JAFFE. Whereas facial features related to neutral, happy 
expressions have exhibited constant learning pattern in 
both controlled and in-the-wild environmental conditions. 
However, large databases in-the-wild like FER2013 and 
ExpW have produced better results than smaller databases. 
In addition, posed facial expressions in laboratory or con-
trolled environment, are impure and inconsistent that cause 
significant degrading in performance of facial expression 
algorithms in the real world settings. In this work, we train 
our CNN-LSTM model to transfer facial features in-the-wild 
settings to the TBI database having pure expressions that 
were carefully annotated by the experts and clinical staff 
members, increasing the FER accuracy on the TBI images. 

Fig. 12  Performance visualiza-
tion of models fine-tuned to the 
target TBI database exploiting 
temporal information from the 
image sequences
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Our experimental findings indicate that the proposed FER 
algorithm achieves equal or even better performance than 
state-of-the-art methods.

The second major contribution is the use of robotic 
technology to transform the recovery from a one-on-one 
comprehensive care of human beings in specialized institu-
tions to a technologically driven, centrally monitored and 

Fig. 13  Visualization of pool of expression in timely order. Video sample of maximum 10 second is taken from AFEW dataset and every 25th 
frame per second is displayed

Fig. 14  Visualization of the 
Pepper robot interaction with 
the subjects during physical 
rehabilitation activity. Identities 
are not covered due to privacy 
issues
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controlled environment. Provided the elevated costs associ-
ated with long-term recovery and the challenge in maintain-
ing adequate duration and severity of impairment treatment 
rehabilitation programs, cost-effective deployment of robotic 
rehabilitation is firmly supported. Implementing emotion 
understanding through the Pepper robot empowers clinicians 
to deliver more productive recovery interventions and enable 
patients to access care more efficiently.
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